

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

INFORMATION-SHARING APPLICATION STANDARDS
FOR INTEGRATED GOVERNMENT SYSTEMS

by

Gary Lavers

December 2010

 Thesis Advisor: Robert Looney
 Second Reader: Sean Everton

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Information-Sharing Application Standards for Integrated Government
Systems
6. AUTHOR(S) Gary C. Lavers

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number _____________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis examines the Department of Homeland Security’s (DHS) Homeland Security Information
Network (HSIN) early acquisition shortcomings identified by the Government Accountability Office, DHS
Inspector General and Congressional Research Service reports. Challenges identified in the initial
development of HSIN reveal a lack of adequate program management, requirements planning, risk
analysis and architectural design led to low user acceptance and continued DHS information-sharing
challenges. Lessons learned from HSIN are examined to determine which best practices can help ensure
major government software-acquisition projects meet user’s needs. Often overlooked, but critical, software
program-management practices include user requirements planning that focuses development on the
highest priority tasks and encourages the timely accomplishment of project milestones, risk planning that
ensures potential roadblocks are understood and addressed, and architectural design practices that foster
the integration of both newly developed and legacy information systems. Without initial and continuous
life-cycle requirements, risk and architectural planning, software projects run an increased risk of going
over budget, missing operational milestones and ultimately not meeting its user’s needs.

15. NUMBER OF
PAGES

93

14. SUBJECT TERMS Homeland Security Information Network, HSIN, Software Acquisition,
Homeland Defense, Enterprise Architecture, Software Reuse, Component Architecture,
Interoperability, Extensibility, Service-Oriented Architecture, Software Risk Management,
Requirements Planning 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

INFORMATION-SHARING APPLICATION STANDARDS FOR INTEGRATED
GOVERNMENT SYSTEMS

Gary C. Lavers
Major, United States Air Force

B.S., University of Maryland, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF ARTS IN SECURITY STUDIES
(HOMELAND SECURITY AND DEFENSE)

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Gary C. Lavers

Approved by: Robert E. Looney, PhD
Thesis Advisor

Sean F. Everton, PhD
Second Reader

Harold A. Trinkunas, PhD
Chairman, Department of National Security Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis examines the Department of Homeland Security’s (DHS) Homeland

Security Information Network (HSIN) early acquisition shortcomings identified by

the Government Accountability Office, DHS Inspector General and

Congressional Research Service reports. Challenges identified in the initial

development of HSIN reveal a lack of adequate program management,

requirements planning, risk analysis and architectural design led to low user

acceptance and continued DHS information-sharing challenges. Lessons

learned from HSIN are examined to determine which best practices can help

ensure major government software-acquisition projects meet user’s needs.

Often overlooked, but critical, software program-management practices include

user requirements planning that focuses development on the highest priority

tasks and encourages the timely accomplishment of project milestones, risk

planning that ensures potential roadblocks are understood and addressed, and

architectural design practices that foster the integration of both newly developed

and legacy information systems. Without initial and continuous life-cycle

requirements, risk and architectural planning, software projects run an increased

risk of going over budget, missing operational milestones and ultimately not

meeting its user’s needs.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MAJOR RESEARCH QUESTION.. 1
B. PROBLEMS AND HYPOTHESIS .. 3
C. METHODS AND SOURCES .. 5
D. OVERVIEW .. 5

II. LITERATURE REVIEW .. 7
A. GOVERNMENT SOURCES ... 7
B. NON-PROFIT INSTITUTIONS ... 8
C. ACADEMIC AND STANDARDS BASED INSTITUTIONS................. 10

1. Enterprise and Service-Oriented Architectures 10
2. User Interface Guidelines.. 11
3. Complying with Standards.. 11

III. HOMELAND SECURITY INFORMATION NETWORK................................. 13
A. HSIN DEVELOPMENT... 14
B. INITIAL SYSTEM APPLICATIONS.. 16
C. ROLLOUT AND RECEPTION ... 17
D. REGIONAL INFORMATION SHARING AND HSIN........................... 19
E. HSIN NEXT GENERATION DEVELOPMENT 20
F. HSIN NEXT GENERATION APPLICATIONS.................................... 22

1. HSIN Common Operating Picture... 22
2. HSIN Connect... 23
3. Wikis and Online Reading Rooms (Open Source

Component Integration) .. 23
4. Federated Search and Role-Based Data Access 24

G. LESSONS FROM HSIN ... 24
1. Inadequate Requirement Planning and Management......... 25
2. Inadequate Risk Planning and Management 26
3. Inadequate Architectural Design Practices......................... 26

H. CONCLUSION ... 26

IV. IMPORTANCE OF ACQUISITION PLANNING AND REQUIREMENTS
MANAGEMENT .. 29
A. WHY ACQUISITIONS SOMETIMES FAIL... 30
B. PROJECT REQUIREMENTS PLANNING ... 32

1. User Requirements Elicitation.. 33
2. Analysis and Modeling.. 34
3. Validation and Verification.. 35

C. REQUIREMENTS PROGRESS MANAGEMENT 35
D. SURVEY OF EXISTING TECHNOLOGY... 36
E. CASE STUDY: INTELLIPEDIA AS AN OPEN SOURCE

SOLUTIONS FOR GOVERNMENT INFORMATION SHARING........ 37

 viii

F. CONCLUSION ... 38

V. RISK MANAGEMENT AND ARCHITECTURAL STANDARDS FOR
COMPONENT INTEGRATION ... 41
A. SOFTWARE RISK MANAGEMENT .. 42

1. Defining Software Development Risk 42
2. Risk Methodologies... 44
3. Advances in Risk: From Tactical Risk to MOSAIC 46

B. SOFTWARE ARCHITECTURE.. 48
1. Evolving Need to Manage Complexity 50
2. Basics of Componentized Design Principles 53

a. Reusability... 55
b. Extensibility... 55
c. Interoperability .. 55

3. Architectural Frameworks... 56
a. Enterprise Architecture .. 56
b. Service-Oriented Architecture 59
c. SOA Practical Example... 60
d. Other SOA Considerations... 61

C. CONCLUSION ... 62

VI. FINAL ANALYSIS .. 63
A. UNDERSTANDING THE PAST TO PROMOTE FUTURE

ACQUISITION SUCCESS.. 64
1. Requirements are Central to Software Planning................. 64
2. Risk Management for Integrated Systems........................... 65
3. Architecture to Manage Complexity..................................... 66

APPENDIX .. 67
A. HOMELAND SECURITY INFORMATION NETWORK AND THE

DEEPWATER HORIZON GULF OIL SPILL 67
B. CONCLUSION ... 70

LIST OF REFERENCES.. 71

INITIAL DISTRIBUTION LIST ... 77

 ix

LIST OF FIGURES

Figure 1. HSIN Change and Improvement Flow.. 22
Figure 2. Risk Management Process... 45
Figure 3. Risk Management MOSAIC for Multi-Enterprise Environments 48
Figure 4. Dice Partitions Example ... 51
Figure 5. Tiered Application Layers ... 53
Figure 6. Sample Data Application .. 54
Figure 7. FEA Segment Map ... 58
Figure 8. Sample SOA Service Design Specification .. 60
Figure 9. HSIN Common Operating Picture for MC252..................................... 69

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. HSIN Entities and Community Focus Areas 15
Table 2. Sample Requirements Inputs, Processes and Outputs 34
Table 3. Partitioned and Non-Partitioned System States 52

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programmer Interface

ATIX Anti-Terrorism Information Exchange

CBP Customs and Border Protection

CCB Change Control Board

CMMI Capability Maturity Model Integration

CMS Content Management System

CMS Content Management System

COI Communities of Interest

COP Common Operating Picture

COTS Commercial Off-the-Shelf Software

CRS Congressional Research Service

DHS Department of Homeland Security

DoD Department of Defense

DOJ Department of Justice

EA Enterprise Architecture

EAF Enterprise Architecture Framework

FAC Federal Advisory Committee

FEA Federal Enterprise Architecture

GAO Government Accountability Office

HSIN Homeland Security Information Network

HSINAC Homeland Security Information Network Advisory Council

IEEE Institute of Electronic Engineers

IG Inspector General

ISCC Information Sharing Coordination Committee

ISE Information Sharing Environment

ISGB Information Sharing Governance Board

IT Information Technology

MOC Mission Operators Committee

OMB Office of Management and Budget

PM Program Manager

 xiv

RE Requirements Elicitation

RFI Request for Information

RISS Regional Information Sharing System

SEI Software Engineering Institute

SOA Service-Oriented Architecture

SPMN Software Program Manager Network

UI User Interface

USAF United States Air Force

XML EXtensible Markup Language

 1

I. INTRODUCTION

One clear lesson of September 11 was the need to improve the
sharing of information. To prevent further attacks and to protect the
homeland, we need to stay a step ahead of those individuals and
organizations intent upon harming America. Key to preventing
future attacks is the gathering of information about terrorist risks
and threats and then ensuring that the information gets into the
hands of those whose responsibility it is to protect our communities
and critical infrastructure.1

A. MAJOR RESEARCH QUESTION

 One mandate of the Homeland Security Act of 2002 directed the

Department of Homeland Security (DHS) to coordinate data and information

sharing among federal agencies, local and state governments, and the private

sector in order to counter terrorist threats and strengthen homeland security.2

Driving this requirement was the fact that a large amount of government

intelligence data is never processed, and a vast amount of potentially critical

information “has undergone little or no assessment regarding its accuracy or

implications.”3 Improving communications and information sharing between

federal, state, and local agencies is a critical requirement established by the

Homeland Security Act, and its implementation is part of the DHS’s primary

mission.

 To meet these requirements, DHS deployed the Homeland Security

Information Network (HSIN), with development beginning in 2002 and fielded in

July 2004. This web-based portal application provides users with access to raw

1 U.S. Executive Office of the President, “National Strategy for Information Sharing:

Successes and Challenges in Improving Terrorism-Related Information Sharing,” October 2007,
7, http://handle.dtic.mil/100.2/ADA473664.

2 Homeland Security Information Sharing Act of 2002 (Public Law 107-296, November 25,
2002), 11.

3 Harold Relyea and Jeffrey W. Seifert. Congressional Research Service, Information
Sharing for Homeland Security a Brief Overview. Congressional Information Service, Library of
Congress, 2005, 2.

 2

collected data, subject analysis, document libraries, “chat” tools, and emergency

management collaboration modules. However, due to shortcomings in the

current system, the DHS has proposed a follow-on system dubbed “HSIN Next

Generation,” and has subsequently stopped development of the first-generation

system.4

At the request of Congress in 2007, members of the Government

Accountability Office (GAO) presented the results of a comprehensive study to

the House and Senate Homeland Security Committees. The information

indicated that the original HSIN was poorly coordinated in its development, did

not interface well with existing state and local data and applications, and

contained unnecessary redundancy with programs used by regional centers.5

The GAO study also claims that many of the flaws present in the development of

HSIN, which hampered its widespread use, were also present in the

development of the next-generation system currently under development.

 This thesis examines the development and implementation of government

information-sharing systems and looks specifically at the flawed acquisition and

management processes that hamper information sharing, as well as best

practices that facilitate collection, processing, and availability of government

information. Proper acquisition and management of government systems

requires careful assessment of existing technology, used by current and

perspective users, along with a review of successful government and industry

acquisition strategies.

 This thesis specifically identifies shortcomings evident in the development

and management of HSIN to order to answer the following questions:

1. What flaws existed in the development and deployment of the Homeland

Security Information Network?

4 The term system in this thesis refers to software and its related architecture and

components and not to the hardware or network used to run the software.

5 Relyea and Seifert. Information Sharing for Homeland Security, 3.

 3

2. How can lessons learned from early management, planning and

implementation of HSIN apply to the development of current and future

systems?

3. What planning and management practices reduce cost and development

time when considering user’s needs and project risks during a program’s

life cycle?

4. What specific system design standards (component-based architectures,

legacy system integration, service-oriented architecture, and other

technologies) facilitate a cost-effective layered approach to developing

flexible systems with a high likelihood of compatibility with future

technology?

B. PROBLEMS AND HYPOTHESIS

In the past several years, numerous systems have been developed and

implemented across the government in an effort to better share information. The

question to ask now is whether interagency information sharing has adequately

improved since 9/11. The answer seems to be weighted toward the negative.

Amy Zegart writes in her book, Spying Blind, “Information sharing and analysis,

two critical shortcomings raised in the wake of 9/11, have not improved much

and in some cases have gotten worse.”6 She goes on to explain “…information

is stored on nearly thirty separate, incompatible information networks. To access

them all, analysts must use more than a half-dozen different computers stacked

underneath their desks.”7 Zegart is not alone in her analysis. The Markle

Foundation Task Force, one of the leading private advocates for intelligence

6 Amy B. Zegart, Spying Blind: The CIA, the FBI, and the Origins of 911 (Princeton, N.J.:

Princeton University Press, 2007), 186.

7 Ibid., 187.

 4

information sharing, states that “today we are still vulnerable to attack because—

as on 9/11—we are still not able to connect the dots.”8

The development of government systems requires careful assessment of

existing technology for current and future users, and the implementation of

component reuse and interoperability standards that facilitate simplified

development and maintenance of the three application tiers (data, business logic,

and user interface), as well as the ability to share data and functionality with

external applications.

 This thesis argues that newly developed government data-sharing

systems require dedicated program management to ensure adequate initial and

continuous life-cycle planning are an integral part of the system’s design. When

time is critical, planning for user requirements, risk and architecture are

sometimes neglected. This thesis shows that many of HSIN’s flaws are rooted in

poor management practices that overlooked these critical aspects of systems

design.

The following is a list of recommendations for the development and

acquisition of new systems based on lessons learned from HSIN and other

government systems, reports and studies conducted to address software

acquisition shortcomings, as well as commercial and academic sources listed in

the next chapter. At a minimum, any large user-based, government software

acquisition strategy should have the following elements:

1. Assignment of a fulltime project manager and staff to oversee the

acquisition and development process.

2. Use of best practices in requirements planning that ensures user and

stakeholder needs are prioritized, modeled, validated and adequately

resourced.9

8 Markle Foundation Task Force, “Nation at risk policy makers need better information to

protect the country,” 2009, 1,
http://www.markle.org/events/20090310_nar/20090304_mtf_report.pdf.

 5

3. Use of best practices in risk planning that covers the project’s entire life

cycle from initial planning to retirement in order to anticipate and mitigate

potential problems.

4. Develop an architecture plan that considers interoperability, component

reuse, extensibility and service-oriented design practices that help new

systems integrate legacy data and increase the probability of compatibility

with future technology.

C. METHODS AND SOURCES

This thesis utilizes a qualitative research approach to determine ways the

government software acquisition process can be improved. This method

provides a systematic approach to understand and evaluate complex and

continually evolving information systems subject matter. The intent of this

research is to determine where weaknesses exist in the government system

acquisition process and, through a comprehensive review of current practices,

offer methods to improve the process.

D. OVERVIEW

 Following a literature review, the third chapter of this thesis consists of a

case study that examines the planning, management and acquisition of HSIN

and the mistakes made in the process. GAO, CRS and IG reports along with

private foundation studies are considered to determine which best acquisition

practices could have improved the development of HSIN.

 Chapter IV begins the process of examining best practices that may have

alleviated many of the program management challenges identified earlier in this

thesis. The first of these is system acquisition requirements planning that help

developers understand and document the core problem set that allows program

managers to define minimum essential tasks and steer resources to where they

9 The term stakeholder is used in this thesis to describe the organization accepting the

delivered product, whether developed internally or contracted to a vendor.

 6

are needed most. Practices like user elicitation, analysis and modeling, and

continuous project requirements validation help keep the project’s main tasks

front and center. The chapter concludes with a case study of Intellipedia based

on a paper by the CIA’s Chief Technology Officer for the Center for Mission

Innovation, Calvin Andrus. The development of Intellipedia shows how

intelligence information sharing needs can be met by understanding the user

needs and selecting the best software and system to match clearly defined

requirements.

 Chapter V addresses the final two challenges faced by HSIN, identified by

GAO and IG and described in Chapter II; that is, risk planning and architectural

design practices. Risk planning involves identifying potential problems that could

occur during system development, determining the probability of a risk occurring

and devoting time to create a plan to mitigate and respond to identified risks.

Without risk planning, project managers and developers are forced to

continuously fight fires instead of simply implementing alternative plans when

contingencies occur. Finally, Chapter V closes with a discussion of modern

componentized architectural design practices that ensure software is reusable,

extensible, interoperable with external systems and able to communicate with

legacy systems for data and functionality sharing.

 7

II. LITERATURE REVIEW

 Several U.S. government agencies, non-profit organizations, academic

institutions, and standards organizations publish reports concerning the

development of government information systems and software acquisition

strategies. There are also several web-portals devoted to software acquisition

best practices, past experience, and resources for integrating rapidly changing

technology into developing and legacy systems. The best method available to

build a comprehensive review of best practices is to extract information from

these sources.

A. GOVERNMENT SOURCES

The most comprehensive work in assessing government acquisition of

information-sharing systems comes from GAO and Inspector General (IG)

reports. The bibliography section of this thesis provides several sources of GAO

and IG reports detailing the shortcomings of HSIN’s initial planning and

development. These reports demonstrate that the main priority in creating a new

system should be to build a prioritized functionality set based on, for example, an

assessment of systems already in use (if any). Once developers and

stakeholders agree to and document requirements, the choice to create new

functionality or integrate existing technology can be evaluated. This process

reduces the likelihood that duplicate systems are developed and that the end

user’s needs are ultimately satisfied.

The GAO has also provided some useful guidance concerning data

collection and management, including XML metadata tagging technology that

fosters information sharing between agencies.10 In a report focusing on the

10 XML is a plain-text data structure. Metadata is a method to include contextual information

with raw data in the form of XML tags. Combined sources of metadata can be searched to
provide data links and potentially produce information. Metadata can be transmitted and received
between non-compatible systems because the tags are formed using XML that is readable across
nearly all platforms.

 8

integration of data technologies, the GAO recommends the development of

information-sharing standards through web services and secure XML

communication-based protocols that enable information sharing between existing

systems. As an example, the report uses transportation department data

combined with elevation, weather models, census, and infrastructure data from

four agencies to analyze various response strategies to natural and manmade

disasters. In order to do this, data must be tagged and made available through

modern data agnostic techniques.11

 The leading resource providers for best or “gold” software system

management is Defense Department’s Information Analysis Center12 and

Carnegie Melon’s Software Engineering Institute (SEI), as well as several

Department of Defense (DoD) armed services specific sites.13 These

organizations are dedicated to providing government and industry a single

source repository of accepted and best practices for software system

architecture, acquisition and management. Other sources of government system

data integration include the Lessons Learned Information Sharing portal

(LLIS.gov), the National Strategy on Information Sharing, and several

Congressional Research Service (CRS) reports (these and others are listed in

the bibliography section).

B. NON-PROFIT INSTITUTIONS

 Respected non-profit groups such as the RAND Corporation and the

Markle Foundation have provided valuable information-sharing and collaboration

recommendations—some of which have been adopted by the federal

government. Similar to the GAO and IG documents, these foundations have

11 Randall A. Yim, United States General Accounting Office, “National Preparedness

Integrating New and Existing Technology and Information Sharing Into an Effective Homeland
Security Strategy,” 2002, 8, http://purl.access.gpo.gov/GPO/LPS34938.

12 The Data and Analysis Center for Software (n.d.), https://www.thedacs.com/.

13 Software Engineering Institute, Carnegie Mellon (n.d.), http://www.sei.cmu.edu/.

 9

produced reports critical of current government information-sharing systems but

have also provided useful roadmaps for improving systems and managing future

acquisitions.

 One particularly useful set of reports comes from the Markle Foundation

Task Force on National Security in the Information Age. To date, this privately

funded task force has produced five reports emphasizing the need for better

government information-sharing standards. In the foundation’s 2006 report,

“Mobilizing Information to Prevent Terrorism,” a comprehensive technology

review is included, laying a foundation for data interoperability: “One of the

principal goals of networked information is to separate content from

applications—i.e., to make information usable and interoperable across many

applications and systems.”14

 The Markle Foundation also recommends against centralizing information,

but rather the implementation of distributed component architecture that covers

“different domains, each having different security and access requirements.”15

RAND and the Markle Foundation also cover constitutional law and public and

private individual rights issues that should be considered when governments

integrate data.

 Another prominent organization is the Software Program Manager’s

Network (SPMN), dedicated to fixing what is broken with the government

software acquisition process “when essential software disciplines and practices

are not implemented on large-scale projects, complexity snowballs into chaos

and cripples or kills programs.”16 One contribution to software acquisition

strategies is the group’s “16 Critical Software Practices,” which specifically

addresses underlying cost and schedule drivers that have caused many software

14 John and Mary R. Markle Foundation, “Mobilizing Information to Prevent Terrorism:

Accelerating Development of a Trusted Information Sharing Environment.” The Markle
Foundation, 2006, 58.

15 Ibid.

16 Software Program Manager’s Network, “The Little Book of Bad Excuses,” 1998,
http://www.spmn.com/products_guidebooks.html.

 10

intensive systems to be delivered “over budget, behind schedule and with

significant performance shortfalls”—information extremely useful for this thesis.17

C. ACADEMIC AND STANDARDS BASED INSTITUTIONS

The purpose of government watchdog and accountability focused

agencies like the GAO and IG is to review existing government programs and

provide recommendations for improvement. Another approach is to study

organizations that provide guidance for both existing and future system

development, and recommend development strategies for user interface,

business logic and data layers across the entire enterprise.

1. Enterprise and Service-Oriented Architectures

For information-sharing systems, one of the best resources is Carnegie

Melon’s Information Sharing Environment (ISE) Portal dedicated to both

government and industrial software development and acquisition.18 For

example, the ISE’s Enterprise Architecture Framework (EAF) and the Mission-

Oriented Success Analysis and Improvement Criteria (MOSAIC) documents

provide an excellent foundation for managing and planning system architecture

that incorporates the latest requirements, risk and component-based design

principles. One of many beneficial aspects of ISE’s reports concerns leveraging

existing capabilities across agencies that help find ways to collaborate using a

broad systems approach to integrating legacy data. To do this, ISE recommends

a service-oriented architecture (SOA) that allows agencies to expose their data

and processes for use by other trusted systems. This method uses an agnostic

data layer that eliminates compatibility issues across systems.19

17 Software Program Manager’s Network, “The Little Book of Bad Excuses,” 1998, 1.

18 Enterprise Architecture Framework Version 2.0, Information Sharing Environment, 2008,
1, http://www.ise.gov/docs/eaf/ISE-EAF_v2.0_20081021.pdf.

19 Ibid., 4.

 11

2. User Interface Guidelines

 While there are seemingly countless academic articles and commercial

studies related to system architecture and data, government and non-profit

institutions listed so far generally lack recommendations for user interface

design. Academia and commercially published books are a good source to

bridge this gap.20 Collaborative information systems used in industry and

government include portals, wikis, content management systems (CMS), and

mashups (to name a few). When employed effectively, well-designed user

interface systems facilitate information sharing and collaboration, increase

productivity, and aid the government in its need to facilitate end user

communication. A poorly designed user interface can impede the flow of

information and lower productivity. Making information searchable and

combining data into useful information require solid technological backend design

as well as an interface that makes utilizing the delivered information simple for

the end user.

3. Complying with Standards

The software acquisition and project management process has been

exhaustively studied and documented by industry, standards organizations and

government for decades. The baseline standard for acquisition is the

responsibility of the Institute of Electrical and Electronic Engineers (IEEE), and

their work is regarded by both government and industry as the definitive source

for standardizing many software and system design practices. For example, the

IEEE document Standard 1062 provides a complete list of steps necessary to

manage new software projects.21

20 Several computer science and systems journals, including IEEE Computing Society, the

SOA Magazine and the World Academy of Science, Engineering and Technology provide
articles dedicated to user interface integration. Government sources primarily focus on data and
business logic layers of software engineering.

21 IEEE Computer Society. “Software Engineering Standards Committee. and Institute of
Electrical and Electronics Engineers,” IEEE Recommended Practice for Software Acquisition.
(1994).

 12

The IEEE also provides a single source of both academic and commercial

thought on issues related to user interface. Several IEEE documents

standardize the concept of application development using a reusable and layered

approach to system design and interoperability. IEEE also recommends a model

“designed in three layers: presentation, application (also called the business-logic

layer), and data.”22 These three layers are combined using a component model

of reusable parts that can be “plugged in” to other systems as required. For

example, a security component can be built into the business logic layer that can

be used across multiple applications. Improvements and bug fixes to the security

components can then be applied across the enterprise without redesigning each

individual system codebase.

At the user interface layer, component design gives users a common set

of controls that require less training. Controls are easily integrated into the

business logic and data layers of multiple systems via a common Application

Programmer Interface (API) architecture. These “components are essentially

characterized by an API…effectively standardizing UI integration.”23

When combined, the standards organizations and best practice sources

mentioned in this chapter form a solid foundation for sound system design,

integration and acquisition strategies. Practices mentioned by these sources are

used in Chapters IV and V to offer strategies that could have improved HSIN’s

initial acquisition, development and integration with legacy systems, and are

useful for the acquisition of future systems.

22 Marino Linaje, Juan Carlos Preciado, and Fernando Sanchez-Figueroa, “Engineering the

Web Track – Engineering Rich Internet Application User Interfaces over Legacy Web Models,”
IEEE internet computing 11, no. 6 (2007): 53–59.

23 Ibid.

 13

III. HOMELAND SECURITY INFORMATION NETWORK

We learned of the pervasive problems of managing and sharing
information across a large and unwieldy government that had been
built in a different era to confront different dangers.

— 9/11 Commission Report

 A harsh spotlight fell on the intelligence and law enforcement communities

following the terrorist attacks on the United States on September 11, 2001. Each

link in the chain that could have exposed or thwarted the attacker’s plan has

since been thoroughly dissected, analyzed and critiqued by intelligence experts

around the world. A lack of adequate information sharing and collaboration

between the various branches of the U.S. government is often cited as one of the

major failures contributing to the success of the terrorist’s operation that day.

To remedy these shortfalls, the U.S. government has taken broad steps to

reform the intelligence community in order to improve information sharing. Since

9/11, an expansive intelligence legal framework has been implemented, including

the passage of the Patriot Act in 2001, establishment of the Department of

Homeland Security, creation of the Director of National Intelligence position and

the creation of the National Counter Terrorism Center—all with the intent to

improve intelligence gathering, sharing, analysis, and dissemination.

The requirement for networked systems to meet the information-sharing

and collaboration needs of these newly created government structures spawned

countless software and system acquisitions that attempt to combine legacy data

into actionable information accessible by multiple agencies.24 The Department

of Homeland Security responded to the need to coordinate homeland security

information by commissioning the web-based application, dubbed the Homeland

24 The term “legacy” is used to describe technology (system, software, data) designed for a

specific purpose and for a specific agency. Legacy systems are often proprietary, incompatible
with external systems and are not designed to be extended by third-party developers.

 14

Security Information Network, which was intended to act as a virtual gathering

point for all levels of government. This chapter examines the information-sharing

requirements HSIN was intended to fill, and the challenges facing development

and adoption of a complex, government information sharing and collaboration

system.

HSIN is a well-documented example of a major government information-

system acquisition requiring the development of new software, integration of

commercial and open-source software, and the need to connect to legacy system

functionality and data across several agencies. Looking at how DHS managed

this requirement provides lessons for future information-system management

challenges.

A. HSIN DEVELOPMENT

DHS’s original goal for HSIN was to provide a means to integrate

information and communication services between federal, state, local, regional

and tribal government entities in accordance with the Homeland Security Act of

200225. Once complete, HSIN was to be “DHS’s primary nationwide information-

sharing and collaboration tool,” incorporating data from all systems within DHS’s

jurisdiction.26 The need to quickly establish a conduit between government

agencies, to prevent another terrorist attack, pushed information system

development to the top of many government agency’s priority list. For DHS, an

effective communication platform became one of the department’s highest

priorities27.

25 Homeland Security Information Sharing Act of 2002. Public Law 107–296, November 25,

2002, 11.

26 Government Accountability Office, “Information Technology Numerous Federal Networks
Used to Support Homeland Security Need to be Better Coordinated with Key State and Local
Information-Sharing Initiatives: Report to the Chairman, Committee on Homeland Security, House
of Representatives,” 2007, 2, http://purl.access.gpo.gov/GPO/LPS82926.

27 Ibid., 3.

 15

By 2003, DHS planned HSIN to have thousands of initial users across

sixteen government agencies. Early on, the decision was made to segregate

users into communities based on their particular information and collaboration

needs. Communities within HSIN were to be connected with an underlying

emphasis on the entities they support within eight mission areas (see Table 1)

that now total thirty-five communities of interest (COI). Each community, such as

defense or law enforcement, has separate portals within HSIN.

Supporting Entities Mission Focus

Federal Critical Sectors

State and Local Defense

Territorial Emergency Management

Tribal Homeland Security

 Intelligence

 Law Enforcement

 Multi-Mission

 International

Table 1. HSIN Entities and Community Focus Areas28

In early development stages, DHS identified eleven major legacy networks

under its control that would have to be integrated into the HSIN framework.

Existing systems like the Customs and Border Protection Network (CBP),

Immigration, Customs Enforcement Network (ICENet), and Transportation and

Security Administration Network (TSANet) are independently developed systems

28 About Homeland Security Information Network. Department of Homeland Security (n.d.),

http://www.dhs.gov/files/programs/gc_1156888108137.shtm.

 16

comprised of proprietary software, data and communication protocols that

presented a substantial development challenge in connecting these disparate

systems. These challenges were compounded by a continuously accelerated

HSIN delivery schedule and a lack of dedicated program management.29

B. INITIAL SYSTEM APPLICATIONS

 The initial rollout of HSIN in 2004 consisted of four major component

designed to connect government agencies and provide a conduit for sensitive but

unclassified information. Web-based information sharing adopted by DHS was

built around what then was called HSIN Enterprise Architecture 1.0, and

consisted of multiple portal web pages, a discussion forum, real-time chat tools

and a searchable document repository.

The purpose of the HSIN portal web application is to provide a framework

for the delivery of user-specific content based on group membership.30 Also

referred to as a Content Management System (CMS) or dashboard, HSIN

content page sections are delivered to users from multiple data sources

populated with information based on COI membership, user configuration and

assigned role. For example, an emergency management user’s page contains

generic homeland security-related sections, as well as pages, links and sections

managed by the Emergency Management community. Portal pages also link to

other HSIN resources that are tailored to a user’s membership profile.

DHS discussion forums provide non-real-time, moderated, text-based

discussions that also serve as an information repository for use by each

community or interest. Forum posts are archived and searchable for use by

29 Government Accountability Office, “Information Technology Homeland Security

Information Network Needs to be Better Coordinated with Key State and Local Initiatives:
Testimony Before the Subcommittee on Intelligence, Information Sharing and Terrorism Risk
Assessment, Committee on Homeland Security, House of Representatives,” 2007, 10,
http://purl.access.gpo.gov/GPO/LPS83332.

30 Web applications differ from a collection of static web pages in that delivered content can
vary based on the a set of parameters and logic coded by the web developer. A Portal web
application is a method to logically organize content sections on a webpage that is configurable
by the user. Content sections typically contain links, news, email, and other data driven content.

 17

current and future users as required. For example, a user may post a question,

and then have multiple community members provide answers that are later

accessible by COI users who have the same question.

The HSIN document library is a managed repository of regulations,

directives and planning products, as well as user-submitted documents. The

result is a searchable, continually growing archive of information segmented by

community with many documents available via search requests available to all

HSIN users.

While the other services mentioned provide a method to build

collaborative knowledge over time, the HSIN’s real-time chat component allows

multiple users to discuss events as they happen. Text-based meetings between

two or more geographically separated users can be conducted and archived for

later use by meeting attendees.

Other system components included reporting and graphic applications that

supply suspicious incident and pre-incident information, mapping and imagery,

24x7 situational awareness, and analysis of terrorist threats, tactics, and

weapons.31

C. ROLLOUT AND RECEPTION

 In February 2004, DHS officially launched HSIN portal with and its initial

set of community-centric components. By July 2004, all fifty states and regional

centers were connected and issued user accounts.32 However, as the system

was deployed at regional centers, it soon became clear that technical issues,

limited or non-existent integration with legacy systems and duplication of existing

functionality, would severely limit HSIN’s acceptance.

31 Government Accountability Office, “Homeland Security Opportunities Exist to Enhance

Collaboration at 24/7 Operations Centers Staffed by Multiple DHS Agencies: Report to
Congressional Requesters,” 2006, 30, http://purl.access.gpo.gov/GPO/LPS76414.

32 Relyea and Seifert. Information Sharing for Homeland Security, 5.

 18

 By the end of 2004, a flurry of GAO, Office of Management and Budget

(OMB), and private organization reports critical of HSIN and other information-

sharing initiatives began to surface. A 2004 Congressional Report to Congress

(CRS) summed up the problem as

… concerns about coordination and duplication of (government
information sharing) initiatives have been raised since there
currently appears to be no centralized inventory of all the
information sharing initiatives being carried out within and between
the federal, state, and local levels.33

In its rush to produce HSIN, it appears that DHS did not attempt to determine if

similar systems were in use and did not develop an adequate set of user

requirements.

The 2004 CRS report identifies four regional and national systems that

provided similar functionality to HSIN and serve many of the same users. The

rollout of HSIN resulted in confusion as to which system was primary for a given

circumstance. For example, one issue concerned how law enforcement and

emergency management systems would integrate with HSIN. The primarily law

enforcement system called Regional Information Sharing System (RISS),

provides identical functionality as HSIN. According to the GAO, HSIN program

managers were unaware of the existence RISS during critical stages of HSIN’s

development:

According to RISS program officials, they met with DHS twice (on
September 25, 2003 and January 7, 2004) to demonstrate that their
RISS ATIX application could be used by DHS for sharing homeland
security information. However, communication from DHS on this
topic stopped after these meetings, without explanation. According
to DHS officials, they did not remember the meetings, which they
attribute to the departure from DHS staff who had attended.34

33 Relyea and Seifert. Information Sharing for Homeland Security, 5.

34 Government Accountability Office. “Information Technology Numerous Federal Networks
Used to Support Homeland Security Need to be Better Coordinated with Key State and Local
Information-Sharing Initiatives: Report to the Chairman, Committee on Homeland Security, House
of Representatives,” 2007, 10.

 19

D. REGIONAL INFORMATION SHARING AND HSIN

The Regional Information Sharing System is a Department of Justice

(DOJ) information system designed to connect local, regional and federal law

enforcement agencies and foster collaboration with other government agencies.

Originally established in 1974, RISS is designed to first connect local agencies

with regional centers and then to the national RISS network. “The RISS program

uses a regional approach, so that each center can tailor/focus its resources on

the specific needs of its area, while still coordinating and sharing information as

one body for national-scope issues.”35

RISS includes traditional web-based information-sharing applications like

web portals for each region, forums, real-time chat and a document library, as

well as applications focusing on law enforcement issues. Application databases

include RISSGang, for collecting and sharing information related to gang activity,

and RISSIntel, for the collection and search of crime-based intelligence.

RISS anti-terrorism initiatives include the Anti-Terrorism Information

Exchange (ATIX) system. This component of RISS was developed in 2002 to

“facilitate communication and information sharing among personnel responsible

for planning and implementing actions to prevent, mitigate, and recover from

terrorist incidents and disasters.” In fact, ATIX was a key player for law

enforcement and disaster recovery efforts following Hurricane Isabel in

September 2003. ATIX was also the primary communication and planning

mechanism for the 2004 G8 Summit in Georgia and the Republican and

Democratic conventions.36

 In DHS’s rush to create an information sharing network for its perspective

users, a survey of existing systems was never adequately conducted. The GAO

reported in 2007 that HSIN was developed and deployed without an

“understanding of the relevance of the Regional Information Sharing Systems

35 Relyea and Seifert. Information Sharing for Homeland Security, 9.

36 Ibid., 10.

 20

program to homeland security information sharing.”37 The result was a duplicate

system targeting the same users with nearly identical features.

Today, DOJ agencies continue to use RISS primarily for information

sharing and HSIN for monitoring real-time incidence like natural disasters.

During national events like a presidential inauguration, control centers must

monitor multiple systems and, today, still have no easy way to manage these

multiple duplicative systems.

The challenge for HSIN is to integrate RISS components and data into

DHS-based systems to, at a minimum, allow users to search RISS-based crime

data. So far, HSIN program managers have been unable to incorporate RISS

data due to architectural limitations inherent in HSIN underlying structure—

highlighting both the need for a flexible, interoperable architecture (described in

Chapter V) as well as effective program management practices.38

E. HSIN NEXT GENERATION DEVELOPMENT

 By the beginning of 2008, DHS had poured over $90 million into HSIN and

over $611 million combined into the eleven homeland security networks under its

control.39 Despite seemingly adequate funding and over four years of

development, HSIN still had few users; DHS stopped actively marketing the

system since it was clear that HSIN was not meeting DHS’ own expectations.

Early in 2008, DHS decided to scrap further development of HSIN and

begin planning a revamped version of HSIN. The new system, called HSIN Next

37 Government Accountability Office. “Information Technology: Homeland Security

Information Network Needs to be Better Coordinated with Key State and Local Initiatives:
Testimony Before the Subcommittee on Intelligence, Information Sharing and Terrorism Risk
Assessment, Committee on Homeland Security, House of Representatives,” 2.

38 Government Accountability Office. “Homeland Security Efforts Under Way to Develop
Enterprise Architecture, But Much Work Remains: Report to the Subcommittee on Technology,
Information Policy, Intergovernmental Relations and the Census, Committee on Government
Reform, House of Representatives,” 2004, 1.

39 Government Accountability Office. “Information Technology: Numerous Federal Networks
Used to Support Homeland Security Need to be Better Coordinated with Key State and Local
Information-Sharing Initiatives: Report to the Chairman, Committee on Homeland Security, House
of Representatives,” 1.

 21

Generation or “Next Gen,” was to be an architectural redesign that would more

easily incorporate data and functionality from external sources and third-party

applications. Acknowledging past management failures, project improvements

for Next Generation include the establishment of a program management office

to oversee system and acquisition planning. DHS established a full-time project

manager (PM) and staff for the first time since HSIN development began.

Included with the full-time PM team is a staff position responsible for gathering

requirements from all users and for surveying existing systems for HSIN

integration of legacy data and functionality.

The DHS also established a Homeland Security Information Network

Advisory Council (HSINAC) with the mission to improve the effectiveness of

HSIN information-sharing initiatives, and a mandate to oversee the development

and improvement of the next generation system. HSINAC held the first annual

three-day meeting in late October 2007. This meeting established policy,

business process and governance requirements needed to better manage

HSIN.40

Since its first meeting, HSINAC has helped create a comprehensive HSIN

governance structure to ensure system requirements “are directly tied to mission

areas and communication capabilities.”41 Figure 1 provides clues to how the

advisory council has improved HSIN program management and its attempt to

match program capabilities with system requirements. As the Change and

Improvement Flow chart shows (Figure 1), DHS Operations organization flows

results of user outreach initiatives into business requirements that are then

considered by a Change Control Board (CCB) chaired by the HSIN program

40 Meeting Minutes: Homeland Security Information Network Advisory Committee Inaugural

Meeting, October 30 – November 1, 2007, The Department of Homeland Security, December 28,
2007.

41 Ibid., 2.

manager. Approved system changes, improvements, and/or additions are then

packaged for implementation during upgrades. Under this new paradigm, user

requirements are the primary driving force for change.

Figure 1. HSIN Change and Improvement Flow42

F. HSIN NEXT GENERATION APPLICATIONS

Improved management and user outreach, along with the funding of an

enhanced architectural design, has allowed HSIN Next Generation to improve

integration of contract-developed applications, commercial components, and

open source software. The Appendix provides a description of how these new

components were used during the recent Deepwater Horizon disaster in the Gulf

of Mexico.

1. HSIN Common Operating Picture

The HSIN portal includes a Common Operating Picture (COP) component

similar to systems used by the Department of Defense. HSIN COP provides

 22

42 Final Report: Homeland Security Information Network Advisory Committee Meeting,
February 10–12, 2009, The Department of Homeland Security, March 27, 2009, 11,
http://www.dhs.gov/xlibrary/assets/hsinac_mtg_2009-2-1012.pdf.

 23

users with real-time, constantly updated information concerning new and ongoing

DHS operations. The COP also tracks media reports and internal and external

requests for information. Task responsibility is assigned for each information

request along with up-to-the-minute status information accessible to all portal

users. Each task has a tracking date, source, and resolution information once

complete.

2. HSIN Connect

Representing a huge advance in real-time collaboration for HSIN, Connect

is a virtual meeting tool available to all system users for anytime, on-demand,

online video meetings via point-to-point encrypted data for enhanced security.

Users can view documents on the presenter’s screen during the session and

record the session for later viewing. Connect is made by Adobe Systems, and is

one of the first third-party tools incorporated into HSIN.

3. Wikis and Online Reading Rooms (Open Source Component
Integration)

HSIN Next Generation’s improved architecture design now includes a

provision to integrate open source components. An example is the

establishment of general information wikis as well as online reading rooms

created to ensure all users have the latest information concerning HSIN-tracked

events.43 Users with edit privileges can add, delete, or correct information on the

fly. One particularly useful section is a lessons learned wiki. From these pages,

user can create additional wiki pages where users can post questions, make

comments or request additional information.

43 A wiki is an open source web-based collaboration tool that allows users to create content

for others to add, delete, or modify as required. For additional information, visit
en.wikipedia.org/wiki.

 24

4. Federated Search and Role-Based Data Access

 One of the original purposes of HSIN was to facilitate information sharing

between government agencies. As discussed in this section, a lack of

management, planning, user outreach and surveys of existing systems during

HSIN’s initial planning resulted in an inflexible architecture that limited the

integration of external data and functionality. The difficulty stems from database

compatibility and connection issues between incompatible data sources and

communication protocols. To solve compatibility issues, a recent search

paradigm, Federated Search, allows separate systems to feed external data

requests without the need for a huge centralized database. Federated search,

along with strict role-based data access, will eventually allow an HSIN user to

search disparate data sources with results tailored to user type or community.

“This means that a Sherriff Doctor with a Secret clearance can see all the law

enforcement, medical, and secret information.”44 Federated search is enhanced

by component and Service Oriented Architectural design practices discussed in

Chapter V of this thesis.

G. LESSONS FROM HSIN

The planning problems DHS encountered developing and deploying HSIN

are common in large-scale software acquisition, with “many projects, perhaps 20

percent, will be abandoned, often after multimillion-dollar investments—and the

biggest projects will fail most often.”45 Pressure to rapidly develop and deliver a

fully functioning, multiple-user system across several government agencies will

almost certainly be encountered again in the future. These projects may be

large, national-level system like HSIN, or smaller initiatives like Intellipedia

(detailed in Chapter IV). Regardless of size, these new systems will almost

44 Final Report: Homeland Security Information Network Advisory Committee Meeting,

February 10–12, 2009, 18.

45 Software Engineering Institute, Carnegie Mellon: Software Development, 2010,
http://www.sei.cmu.edu/solutions/softwaredev/.

 25

certainly require a combination of internally developed technology, off-the-shelf

software and custom-built components, along with the use of open source

software to satisfy a set of requirements. To improve these future projects, it is

beneficial to look at large-scale system acquisitions like HSIN to help mitigate the

risk of repeating past mistakes.

One of the main shortcomings noted in nearly every report concerning the

development of HSIN was a lack of program management early in the project. It

is evident in these reports that operational necessity trumped the need for solid

management practices. It can be argued that DHS’s initial and almost fatal

mistakes were in not creating a full-time project manager with an adequately

staffed office during the initial planning and design phases of the project. This

lack of management led to the following missteps during early HSIN development

and deployment:

1. Inadequate Requirement Planning and Management

Understanding the problem a new system is trying to solve and how best

to meet user’s needs is fundamental to system design planning. Inadequate

requirement planning caused HSIN to have an increased risk of exceeding

“project costs, delayed schedules and performance shortfalls.”46 As the GAO

noted, initial HSIN planners did not adequately survey potential users or attempt

to determine what government systems are currently in use by HSIN’s intended

user base. The next chapter of this thesis focuses on best practices in system

requirement planning that could have helped HSIN during early planning and are

likely beneficial for future government system acquisitions.

46 Government Accountability Office, “Information Technology Management Improvements

Needed on the Department of Homeland Security's Next Generation Information Sharing System:
Report to Congressional Requesters,” 2008, 14, http://purl.access.gpo.gov/GPO/LPS104962.

 26

2. Inadequate Risk Planning and Management

Risk management during a project’s life cycle helps ensure potential

problems are managed and (when possible) mitigated. To some planners,

project risk management is a luxury that time often does not permit. However, in

many cases, good risk management practices help identify design flaws that

could potentially result in schedule and cost overruns. For HSIN, risk planning

did not begin until the development of the next generation system; “however,

they (HSIN risk managers) have yet to identify all key risks surrounding the

project and develop risk mitigation plans.”47

Chapter V of this thesis identifies SEI, DACS and other leading

government acquisition resource best practices for software risk management.

These software risk-planning resources show that devoting time to risk

management helps planners anticipate and effectively react to problems that can

lead to cost and schedule overruns.

3. Inadequate Architectural Design Practices

Selecting an architectural design is fundamental to the success of

complex systems like HSIN. Poor system design and planning can lead to a

chaotic mix of functionality that is difficult to maintain and secure. Modern design

practices incorporate component architectures that break complex projects into

manageable pieces. Chapter V of this thesis examines best practices in system

architecture that fosters the integration of legacy systems that easily supports

future technology.

H. CONCLUSION

Since HSIN was first delivered in 2004, the system has struggled to meet

its user’s need for a single source of homeland security information and

47 Government Accountability Office, “Information Technology Management Improvements

Needed on the Department of Homeland Security's Next Generation Information Sharing System:
Report to Congressional Requesters,” 2008.

 27

collaboration. Fortunately, recent improvements in architecture, integration of

commercial components and a dedicated program management team have

helped HSIN Next Generations gain acceptance within the DHS community.

To help HSIN and other government system acquisition programs, the

GAO, CMS and non-governmental organizations have identified the source of

HSIN’s initial development shortcomings. These include not assigning a full-time

project management team, which ultimately led to inadequate requirements

planning, risk management and architectural design practices. The remainder of

this thesis is devoted to identifying key best practice in each of these areas of

software system development, as well as acquisition resources useful for further

study.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. IMPORTANCE OF ACQUISITION PLANNING AND
REQUIREMENTS MANAGEMENT

Question: What does the timing look like (to provide better data
interoperability for HSIN)?

Answer: This could take five years…HSIN itself was put out under
threat conditions, there wasn’t time to lay out the plan–due to
operational necessity.

—HSINAC meeting minutes, February 12, 200948

 Effective acquisition of government information-sharing systems is critical

to the success of agencies that are mandated is to piece together disparate data

streams and combine them into actionable information. Developing an

acquisition strategy based on lessons learned from past development,

commercial industry standards and academia, along with advances in

component architectures that foster interoperability and extensibility, can help

increase the probability of success for future acquisition projects.49

Government and industry software and systems development is a vast

subject area to consider. A project manager—with a mandate to oversee

systems that combine multiple external data sources, have thousands of role-

based users, contain sensitive information, and integrate internally developed,

commercial, purchased and open-source software—has literally thousands of

high-level details to consider. The scope and scale of such an undertaking is the

subject of countless volumes of research. Despite this complexity, it is worth

attempting to identify key issues that hamper the success of government system

projects and locate solutions that reduce complex problems into manageable

subsets.

48 Final Report: Homeland Security Information Network Advisory Committee Meeting,

February 10–12, 2009, 18.
49 Extensibility is a software design feature that allows functionality to be added in the future.

This helps insure software systems do not become obsolete as new technology is developed.
Interoperability allows software to exchange information with internal or external systems.

 30

 This chapter begins with a look at why large acquisition projects fail and

how lessons learned from failed projects can be used to build better project

management practices. This chapter also considers system project planning and

how carefully developed requirements are critical to the success of an effective

software acquisition strategy. These requirement processes continue throughout

a program’s life cycle and feed into the risk and architectural strategies covered

in Chapter V.

A. WHY ACQUISITIONS SOMETIMES FAIL

Statistics from Carnegie Melon’s Software Engineering Institute portal show

that HSIN is not unique in its struggle to evolve from initial development to a

delivered, user-accepted product:

Organizations and governments worldwide will spend about $1
trillion this year on IT projects. Recent data suggested only about
35 percent of those projects are likely to be completed on time and
on budget, with all their originally specified features and functions.
Many projects, perhaps 20 percent, will be abandoned, often after
multimillion-dollar investments—and the biggest projects will fail
most often.50

 Attempting to understand why software acquisition projects fail is a well-

established area of research. Over the past twenty years, lead sources for

government program improvement include the Defense Science Board (DSB),

Software Engineering Institute (SEI) and the National Defense Industrial

Association (NDIA), as well as the GAO. In fact, the GAO’s 2004 Defense

Acquisitions reports are considered a “rallying point for any and all acquisition

organizations who are struggling to improve the results from their software

acquisition processes.”51 Also, a recent Carnegie Melon academic study,

“Lessons Learned from a Large, Multi-Segment, Software-Intensive System,” is

50 Software Engineering Institute, Carnegie Mellon: Software Development.

51 The Data and Analysis Center for Software: Software Acquisition Gold Practice, 2010,
https://goldpractice.thedacs.com/practices/api/.

 31

devoted to the shortcomings commonly found in government acquisition projects

and is the culmination of many years of research.52

 According to these sources, many of the reasons for information

technology (IT) project failures are also areas identified as shortcomings

associated with HSIN’s early development. According to these sources, some of

the most common reasons information technology (IT) acquisitions fail are a lack

of initial requirements, risk and architectural planning. In fact, according to the

GAO and DHS’s own HSINAC, a lack of initial planning and research are the

main reason HSIN failed to attract users.53 These primary sources of acquisition

research indicate that it is critical for managers to understand the importance of

these areas of software acquisition planning.

 Over the years, since DHS first deployed HSIN, it became clear that

HSIN’s “initial development was not based upon a solid set of user requirements;

as a result, the performance of HSIN program management was not

adequate.”54 The rush to develop and deploy a system—any system—lacked

the management oversight needed to create a coherent plan. DHS subsequently

found that pushing an inadequately planned and managed system onto their user

base created a difficult set of challenges. DHS is now painfully aware that fixing

an existing flawed system is much more difficult than doing the necessary upfront

planning. DHS also found that marketing an ineffective system hampers its

adoption and use, even as system improvements are later delivered.55

 Fortunately, DHS’s establishment of an HSIN program office, with a full-

time program manager and staff in 2007, helped the development of the next

52 Lessons Learned from a Large, Multi-Segment, Software-Intensive System, Software

Engineering Institute, Carnegie Mellon, n.d., 1,
http://www.sei.cmu.edu/library/abstracts/reports/09tn013.cfm.

53 Final Report: Homeland Security Information Network Advisory Committee Meeting,
February 10–12, 2009, 18.

54 Ibid., 3.

55 HSINAC Committee’s annual meeting minutes from March 2007 and March 2009 detail
the difficulty in marketing system improvements.

 32

generation system currently being deployed. However, shortcomings associated

with HSIN’s early development serve as an anchor that demonstrates the need

for management practices that include requirement, risk and architectural

planning. If DHS had initially established a full-time program manager, with

adequate time to lay a solid foundation in these three areas, HSIN usability and

acceptance would certainly look different today.

B. PROJECT REQUIREMENTS PLANNING

 Managing the development of a large, complex system requires a plan.

The fundamental focus of a project plan is to clearly lay out the problem the

system is trying to solve. Understanding and documenting the core problem set

allows the program manager to define and communicate the minimum essential

high-level tasks that must be accomplished during system development.56

Clearly establishing these minimum requirements helps focus development

team-member activities and helps to defend against the pitfalls associated with

inadequate planning.

 A comprehensive case study of fifteen successful software-system

development projects, published in IEEE Software Journal in conjunction with the

Department of Defense Information Analysis Center, identified several key

requirement practices used in successful project acquisitions.57 Software

acquisition best practices identified by this study separate requirements planning

into subtasks that include user elicitation, requirement analysis, modeling and

validation. These subtasks occur throughout development, and continue as the

system is deployed and upgraded. Once initial requirements are established,

timelines, benchmarks and milestones form the pillars of a management plan that

guides the entire process.

56 The Data and Analysis Center for Software, “Requirements Engineering,” n.d.,

https://www.thedacs.com/databases/url/key/5086.

57 Ibid.

 33

1. User Requirements Elicitation

 Understanding user needs is a critical component of requirements

planning that continues throughout the development process. “The most

successful teams always involve customers and users in the requirements

elicitation (RE) process…according to one study, user participation is one of the

most important factors contributing to requirements engineering success.”58

 For HSIN, meeting user requirements is one of the most frequently cited

areas needing improvement.59 Clues to fixing this requirements task can be

found in SEI’s Capability Maturity Model Integration (CMMI), considered the

software systems acquisition bible by many in government and industry. CMMI

Software Goal 1 (SG-1) states that user needs, expectations, and interfaces

must be translated into a concise document that evolves during a product

development. SG-1 recommends that the project management team observe

user workflow patterns, and conduct interviews and operational scenarios to

determine the technical functionality required by users. The user “typically

describes requirements as capabilities expressed in broad operational terms

concerned with achieving a desired effect under specified standards and

regulations.”60 The effect described should also have enough detail to guide

user interface designs. For example, instead of simply indicating the user would

like database search functionality, the requirement should also describe filtering,

content needs and a description of how the user interface should display the

output. The solicitation process should continue through all phases of

development and deployment to ensure current and future needs are included in

the process.

58 Hubert F. Hofmann, “Requirements Engineering as a Success Factor in Software

Projects,” IEEE Software, July 1, 2001, 65.

59 Government Accountability Office, “Information Technology Management Improvements
Needed on the Department of Homeland Security's Next Generation Information Sharing System
Report to Congressional Requesters,” 3.

60 CMMI for acquisition, Version 1.2: CMMI-ACQ, v1.2. (Pittsburgh, Pa.: Carnegie Mellon
University, Software Engineering Institute, 2007), 97.

 34

 Once a comprehensive list of requirements is developed, CMMI

recommends prioritizing the list to ensure user priorities also meet the needs of

the organization. Prioritized requirements are then analyzed and modeled in

order to build milestones and performance goals.

User and Stakeholder
inputs (examples)

Intermediate Process
User Requirement
Outputs

User Questionnaires
Compile list based on
user inputs

Discussion Groups
Resolve conflicting
requirements

Operational scenarios
from end users

Prioritize requirements list

Internal business process
documents, standards or
specifications

Consider potential
obstacles, supportability

Prioritized User
Requirements (to feed
program definition,
analysis and validation
processes)

Table 2. Sample Requirements Inputs, Processes and Outputs61

2. Analysis and Modeling

 Both the CMMI and IEEE acquisition documents recommend building

models that analyze user and stakeholder requirements in terms of minimum

operational needs of the proposed system. The analysis phase is simply a

further refinement of user-solicited requirements that are later matched to

functionality. For example, some user-gathered inputs are valid, but do not fit

overall functional requirements needed for initial operations. Below the line

requirements contain “nice to have” functionality to include if resources permit,

but are not necessary for the system to be considered functional. Other aspects

of analysis concern stakeholder needs that addresses proposed functionality in

61 CMMI for acquisition, Version 1.2: CMMI-ACQ, v1.2. (Pittsburgh, Pa.: Carnegie Mellon

University, Software Engineering Institute, 2007), 96.

 35

terms of “cost, schedule, performance, functionality, reusable components,

maintainability, and risk.”62 Chapter V of this thesis covers the latter three

architectural-related tasks.

 Modeling is a relatively new concept that involves creating interface

prototypes that allow developers to simulate proposed minimum functionality

based on the user requirement document developed during requirements

analysis. These models can serve to synchronize developer, stakeholder and

user understanding of how the interface should deliver functionality that matches

identified requirements. Models can use custom-built simulations or can be

demonstrated using existing applications whose functionality will be combined to

form the user interface.

3. Validation and Verification

 Validation and verification is essentially a big-picture sanity check

conducted after the initial requirements document is complete. The stakeholders

and developers work together to ensure requirements are properly prioritized,

that requirements included in the initial design meet minimum essential system

needs, and that lower priority items can be integrated in later versions if

necessary. Again, these decisions feed the risk and architectural design

requirements conducted later in the development cycle.63

C. REQUIREMENTS PROGRESS MANAGEMENT

 Once initial operating requirements are established through elicitation,

analysis and modeling, the IEEE recommends selecting processes that will serve

as progress indicators.64 These indicators establish core task milestones that

are integrated into progress and management review timelines that facilitate

62 CMMI for acquisition, Version 1.2: CMMI-ACQ, v1.2., 104.

63 IEEE Computer Society. Software Engineering Standards Committee. and Institute of
Electrical and Electronics Engineers, IEEE Recommended Practice for Software Acquisition, 59.

64 Hubert F. Hofmann, “Requirements Engineering as a Success Factor in Software
Projects,” 62.

 36

resource and allocation planning. Without a program-managed set of core tasks,

development often strays as complexity increases and user requirements evolve

during development. Constant unchecked changes without milestones can lead

to time and cost overruns.65 Changes during the development life cycle are

necessary and even desired; however, without a mechanism to manage

alterations to initially agreed-to functionality, projects can grow out of control.

DACS gold practices for project management states it this way:

Requirements Management (RM) seeks to reduce the risk of cost
and schedule overruns by establishing a way to control the
continuing definition of requirements as changes occur and
unforeseen needs arise and as knowledge is gained during
development, in contrast to more traditional development
approaches where requirements were documented (often without
involvement of the developer) prior to any development activities
and frozen for the life of the effort. The successful implementation
of RM depends on having flexible scenarios that require the
establishment of a process to manage requirements (in lieu of rigid
pre-defined specifications) that addresses specification, change
control and traceability, and identifies what stakeholders must be
involved in the various activities of the process throughout the life
cycle.66

 This evolutionary approach allows the PM team to manage requirement

changes without the project losing focus on the core problem set discussed

earlier.

D. SURVEY OF EXISTING TECHNOLOGY

 Designing and managing large-scale systems that incorporate data from

multiple legacy systems, replace and/or add functionality and include commercial

and open-source components requires intensive upfront and ongoing planning to

establish a flexible and interoperable architecture. However, before selecting an

architecture, it is important to understand what part of the system must be

developed in-house, and can be commercially purchased or acquired as an

65 The Data and Analysis Center for Software, “Requirements Engineering.”

 37

open-source solution that is later modified to meet previously defined

requirements. The CIA’s information-sharing program, Intellipedia, described

next, provides a good example of a government organization matching user

requirements with existing functionality.

E. CASE STUDY: INTELLIPEDIA AS AN OPEN SOURCE SOLUTIONS
FOR GOVERNMENT INFORMATION SHARING

 In 2006, CIA officer Calvin Andrus wrote an essay concerning government

information sharing and the Internet titled, "The Wiki and the Blog: Toward a

Complex Adaptive Intelligence Community."67 In his essay, Andrus defined the

problem he sought to solve by first arguing that information management

techniques must evolve in order to be useful to the end user. Intelligence

managed by a small subset of information managers attempting to maintain

content from thousands of sources is inherently inefficient. Seemingly

insignificant pieces of data that could be tied together to form useful intelligence

often slips through the cracks when large amounts of data pass through few

hands.

 To solve this problem, Andrus suggested that individual intelligence

officers be empowered to shape source data in real time and “be allowed to

react—in independent, self-organized ways—to developments in the national

security environment.”68 According to Andrus, intelligence data must also be

easily shared with all users and include a mechanism for feedback from anyone

in the community.

 Andrus’ call, for more dynamic, independent and self-organized

information sharing that is less centrally managed and more user accessible, is a

good starting point for a software acquisition manager to transition from a defined

66 The Data and Analysis Center for Software, “Requirements Engineering.”

67 D. Calvin Andrus, The Wiki and the Blog: Toward a Complex Adaptive Intelligence
Community, Studies in Intelligence, 2005. http://ssrn.com/abstract=755904.

68 Ibid., 3.

 38

problem to a user requirement. In this case, a requirements list could be

developed that included interface requirements describing how data should be

input, edited and commented on by users.

Fortunately, for this particular problem set, a model already existed, one

that met the user’s need for a user-edited content-management system. The

open-source web-based content system, called a Wiki, allows individuals to “self-

organize around shared knowledge.”69 Once set up, the Wiki interface allows

information contributors to add information, edit other user’s information and

provide amplifying comments anywhere within the document. Any user can

create a new document that the community can edit as the situation evolves.

In this case, the model (Wiki software) fits the requirements so closely that

the model itself becomes the solution. The intelligence-inspired Wiki became

known as Intellipedia and is in widespread use in the intelligence community

today. The selection of an open-source, easily managed system almost certainly

reduced the cost of acquiring a system to meet the user requirements

established by Andres’ essay.

F. CONCLUSION

 Understanding why major acquisition projects fail can help future project

managers create strategies to avoid common pitfalls that have plagued past

acquisition projects. Organizations like the GAO and Carnegie Melon’s SEI have

identified requirements, risk and architectural design as planning areas

commonly neglected in struggling and failed government software acquisitions.

These planning areas are also cited by GAO and CRS reports as weaknesses

associated with HSIN’s initial development.

 A basic task for any new software system is to determine the problem it is

trying to solve. Best practices in project planning help program managers

develop, prioritize, analyze and model requirements in order to ensure proposed

69 D. Calvin Andrus, The Wiki and the Blog: Toward a Complex Adaptive Intelligence

Community, Studies in Intelligence, 2005, 3. http://ssrn.com/abstract=755904.

 39

functionality meets the user’s needs. Good requirements planning also helps

establish minimum initial functionality and milestones that keep the project from

exceeding budget and time limitations. A solid understanding of the user’s needs

and matching functionality can then be analyzed for developmental risks and

broken into manageable components that lay a foundation for selecting an

appropriate architecture.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

V. RISK MANAGEMENT AND ARCHITECTURAL STANDARDS
FOR COMPONENT INTEGRATION

I have not failed. I've just found 10,000 ways that won't work.

 —Thomas Edison

 Managing a large project certainly involves some degree of risk. Whether

risk ultimately results in failure often depends on preparation and planning for the

unexpected. Chapter IV discussed requirements as the first of the three

commonly neglected areas of software system acquisition (requirements, risk,

architecture planning). As described in Chapter IV, best practices in

requirements management include elicitation, analysis, modeling and validation

to help match user needs with application functionality. During this process,

requirements can be matched to a model to help the developer and stakeholder

fully define the problem as well as find potential solutions through contract-

developed applications, commercial off-the-shelf software (COTS) and/or open-

source projects. From here, complex functionality can be separated components

that, when combined, comprise an initial system design.

 How these components interact, and how data is shared and distributed,

is part of the system architectural design process that involves decisions that

have ramifications throughout the projects life cycle. Implementing the wrong

architectural solution can mean legacy and newly created systems do not easily

interact or share data and functionality. Architecture, together with requirement

planning, ultimately allows project managers to begin to build a comprehensive

project plan. However, plans developed during this stage almost always

encounter obstacles during execution. Devoting time to plan for potential

obstacles is key to mitigating the risk of a project going off track.

 This chapter examines two often-overlooked areas of system design that

should be considered from the beginning of the system acquisition process: risk

management and architectural design. Planning for risk is sometimes seen as a

 42

nice to have but not crucial aspect of system planning. However, good risk

management can help identify design weakness that later result in delays and

cost overruns. System architecture is another planning task sometimes given

minimal time and resources. However, systems that are haphazardly pieced

together components can lead to unintended consequence that include

dependence on proprietary data and code, security flaws and interoperability

issues—all avoidable with good architectural planning.

A. SOFTWARE RISK MANAGEMENT

1. Defining Software Development Risk

 With an adequately researched and prioritized set of user requirements

and procedures in place to manage these requirements, the project manager

should next consider risks that can cause project delays. The Data and Analysis

Center for Software defines risk as:

A proactive approach for minimizing the uncertainty and potential
loss associated with a project. A risk is an event or condition that, if
it occurs, has a positive or negative effect on a project’s objectives.
Future events can be categorized as opportunity-focused (positive
risk) if their consequences are favorable, or as threat-focused
(negative risk) if their consequences are unfavorable.70

 At a basic level, software risk management is a process for developing a

list of hazards or problems that could reasonably occur through a system’s life

cycle, determine the probability of each occurring, and develop plans to mitigate

or otherwise react to negative events. Failing to develop and manage a risk plan

can be likened to failing to purchase auto insurance. If the insurance purchased

is never needed, it is tempting to consider the expense a waste of money.

However, if an accident does occur, insurance can prevent financial ruin, and is

therefore seen as a positive.

70 The Data and Analysis Center for Software, Risk Management, 2010.

 43

 Setting aside development time specifically for risk management,

particularly for projects with limited development time, can seem unnecessary.

However, over the past fifteen to twenty years, software complexity has grown

exponentially. Without an adequate risk plan and management process,

program managers can find themselves fighting fires instead of effectively

managing the unexpected.

There are two ways of dealing with risk. One, risk management, is
proactive and carefully analyzes future project events and past
projects to identify potential risks. Once risks are identified, they are
dealt with by taking measures to reduce their probability or to
reduce their impact. The alternative to risk management is crisis
management. It is a reactive and resource-intensive process, with
available options constrained or restricted by events.71

 When risk is not carefully considered and the unexpected delay does

occur, risk planning is correctly highlighted as lacking. For HSIN, risk

management has been cited as one of three major factors contributing to the

systems shortcomings. In 2008, the GAO reported that HSIN’s aggressive

upgrade schedule had precluded adequate risk management planning. In fact, it

was not until five years into the development of HSIN that the implementation of

a risk management plan was established. As noted in a 2008 GAO report, “DHS

has begun to develop a risk management plan that defines staff roles and

responsibilities. However, it has yet to identify all key risks surrounding the

project and develop risk mitigation plans and completion milestones.”72 As

illustrated next, adding risk planning is a straightforward process that continues

through the project’s life cycle.

71 Software Technology Support Center, “Understanding Risk Management,” CrossTalk,

2005, http://www.stsc.hill.af.mil/crosstalk/2005/02/0502stsc.html.
72 Government Accountability Office, “Information Technology Management Improvements

Needed on the Department of Homeland Security's Next Generation Information Sharing System:
Report to Congressional Requesters,” 2008, 4.

 44

2. Risk Methodologies

 Systematic methods to manage risk in software development date back to

the late 1980s with the IEEE’s tutorial “Software Risk Management,” in which

core risk concepts were established.73 In this paper, Dr. Barry Boehm defines

the purpose and importance of risk management planning as methods to:74

1. Avoid software project disasters, including runaway budgets and

schedules, defect-ridden software products, and operational failures.

 2. Avoid rework caused by erroneous, missing, or ambiguous

 requirements, design or code, which typically consumes 40–50% of the

 total cost of software development.

 3. Avoid overkill with detection and prevention techniques in areas of

 minimal or no risk.

 4. Stimulate a win-win software solution where the customer receives

 the product they need and the vendor makes the profits they expect.

 Boehm makes the point that risk management, regardless of project type,

is a continuous cycle of risk analysis, prioritization and planning that highlights

potential problems and provides contingency plans for in case those problems

arise. Without a risk plan, problems are simply address as they occur, which

almost certainly increase costs and results in project delays as solutions are

sought on the fly.

 While specific risk management processes vary for each project, Figure 2

provides a good illustration of a generic project risk flow. Planning begins by

identifying and analyzing problems that have the potential to compromise a

project’s success. Identifying risks requires time to be set aside specifically for

73 Barry W. Boehm and Ez. Nahouraii, IEEE Computer Society, Software Risk Management:

Principles and Practices (IEEE Computer Society Press, 1989).

74 Ibid., 89.

stakeholders, requirements managers, developers and project manager to

brainstorm the challenges that could present themselves during the projects

development.

Figure 2. Risk Management Process75

 Once risks are identified, project planers should then devote time to

examining the likelihood each identified risk has of occurring. In order to rack-

and-stack identified risk, Boehm offers a simple risk equation that allows

planners to quantify risk:

 RE = Probability (UO) * Loss (UO), Where UO = Unexpected Outcome

 Calculating probability and loss are subjective and often rely on

experience gained from past project acquisition and development. Boehm’s

method forces planners to consider how likely an event will occur (Risk #1) and if

identified risks could increase in probability of another identified risk occurring

(Risk #2). This process helps prioritize the list of risks so that resources can be

appropriately allocated and continuously tracked and reassessed.

75 Linda Westfall, “Software Risk Management,” The Westfall Team, 2001,

http://www.westfallteam.com/Papers/risk_management_paper.pdf.

 45

 46

 Since the original work was published, the SEI and IEEE have expanded

upon Boehm’s work by developing software risk-management frameworks that

simplify incorporating risk planning into any project.76 Also, risk checklists from

NASA and SEI, as well as non-software-specific risk checklists from Arizona

State University and the Department of Energy, are considered industry

standards.77

3. Advances in Risk: From Tactical Risk to MOSAIC

 As government software projects increase in complexity, the need for

initial and ongoing detailed planning becomes increasingly critical. While the

IEEE and SEI have advanced the field of risk planning for government systems,

the potential for failure increases as systems become more complex. To meet

these challenges, SEI has expanded its basic software risk framework, which

“codified” risk management best practices, and laid a foundation for further

advances.78 The first such advance is their Mission-Oriented Success Analysis

and Improvement Criteria (MOSAIC) process, intended to help project managers

maintain control of large, distributed system development that is increasingly

common in government settings.79

 The main advance MOSAIC provides is a shift from tactical risk planning

to a higher-level framework, better suited to a distributed development

environment. SEI describes the traditional tactical risk approach as planners

looking for what can go wrong, determining which of these risks are most

76 Christopher J. Alberts and Audrey J. Dorofee, Risk Management Framework (Software

Engineering Institute, Carnegie Mellon, 2010), http://www.sei.cmu.edu/reports/10tr017.pdf.
77 Arizona State University, Question List for Software Risk Identification in the Classroom,

n.d., http://www.eas.asu.edu/~riskmgmt/qlist.html.

78 Christopher J. Alberts and Audrey J. Dorofee, Risk Management Framework (Software
Engineering Institute, Carnegie Mellon, 2010), http://www.sei.cmu.edu/reports/10tr017.pdf.

79 Distributed systems are application and hardware infrastructures that connect multiple
networked computers that form clusters that connect to other clusters. Each cluster can have a
separate user-base and purpose. Applications must communicate within clusters and with other
clusters. Managing distributed system can create complex communications, reliability,
availability, serviceability and scalability issues that require innovative risk management
techniques.

 47

important and allocating resources on the most likely risks identified.80 This

approach has worked well for systems that operate with few interconnections,

like desktop applications for example, but are not as well suited for complex

interconnected system development.

 Networked distributed systems like HSIN operate in a dynamic

environment with multiple layers of separately developed legacy systems that

have a high degree of uncertainty when considering potential risks. A bottom-up

tactical risk analysis typically focuses on corrective action associated with each

identified risk occurrence, but does not adequately address the impact of a risk’s

consequences on the network of systems. This is because distributed system

development contains such a large number of risk variables that predicting the

outcome of a particular event becomes increasingly difficult.

 The intent of SEI’s MOSAIC is to solve the shortcomings of the traditional

tactical risk planning by analyzing a project in terms of its processes. Processes

have drivers that “guide the outcome (of a process) toward key objective

(success state) or away from them (failure state).”81 SEI identifies twenty drivers

associated with software system development; they range from defining program

objectives, and planning to final certification and acceptance.

80 Audrey Dorofee and Christopher Alberts, Rethinking Risk Management: NDIA Systems

Engineering Conference. Software Engineering Institute. 2009.

81 Ibid., 32.

Figure 3. Risk Management MOSAIC for Multi-Enterprise Environments82

 Drivers are divided into categories that cover the spectrum of the software

development life cycle that can be analyzed across an organization. As shown in

Figure 3, organizational analysis is combined for use in system-wide analysis

and planning across segmented proprietary organizations using legacy systems.

This approach helps planners visualize risk interaction across system segments

to determine how individual risks affect the broader enterprise. This approach is

easier to accomplish when the system is comprised of components organized by

a component-based architecture, as discussed next.

B. SOFTWARE ARCHITECTURE

 Another aspect of software system development sometimes overlooked in

time-critical projects is architectural design. Software architecture is defined by

IEEE Standard 610.12-1990 as "the structure of the components of a program

and/or system, their interrelationships, and principles and guidelines governing

82 Dorofee and Alberts, Rethinking Risk Management: NDIA Systems Engineering

Conference. Software Engineering Institute, 2009, 129.

 48

 49

their design and evolution over time."83 Another useful definition concerns the

structural relationship between components and their effect on managing risk:

Software architecture of a computing system is the structure or
structures of the system, which comprise software components, the
externally visible properties of those components, and the
relationships among them. By ‘externally visible’ properties, we are
referring to those assumptions other components can make of a
component, such as its provided services, performance
characteristics, fault handling, shared resource usage, and so on.
The intent of this definition is that a software architecture must
abstract away some information from the system (otherwise there is
no point looking at the architecture, we are simply viewing the
entire system) and yet provide enough information to be a basis for
analysis, decision making, and hence risk reduction.84

 This component approach to system design is integral in

developing systems that incorporate data and functionality from external

legacy systems. As stated in the quote above, software architectural

considerations are not typically concerned with low-level component

construction like algorithms or language selection. Instead, architectural

design can be thought of as an assembly of puzzle pieces (functional

components) with a set of rules that define how the pieces fit together and

how separate puzzles are connected to create a larger construct.

 Without adequate architectural planning that includes risk and

requirements, software architecture can become a haphazard mesh of

functionality that is poorly organized and prone to security and

maintenance issues. Early HSIN development has been noted for lacking

adequate architectural planning, which has resulted in HSIN’s difficulty in

connecting several important external data sources (RISSNet for

example):

83 IEEE Computer Society. Standards Coordinating Committee. et al., IEEE Standard

Glossary of Software Engineering Terminology (New York, NY: Institute of Electrical and
Electronics Engineers, 1990).

84 Len Bass, Paul Clements, and Rick. Kazman, Software Architecture in Practice, SEI series
in software engineering (Reading, Mass: Addison-Wesley, 1998), 21.

 50

[DHS] is missing, either in part or in total, all of the key elements
expected to be found in a well-defined architecture, such as
descriptions of business processes, information flows among these
processes, and security rules associated with these information
flows, to name just a few... Moreover, the key elements that are at
least partially present in the initial version were not derived in a
manner consistent with best practices for architecture
development... As a result, DHS does not yet have the necessary
architectural blueprint to effectively guide and constrain its ongoing
business transformation efforts and the hundreds of millions of
dollars that it is investing in supporting information technology
assets.85

 Solid architectural design planning helps developers manage complex

systems by segmenting or partitioning functionality into manageable

components. Best practices in software architectural design described in this

section produces systems that are extensible and interoperable, built using data

agnostic communication to maximize information sharing, and are easier to

maintain and secure.

1. Evolving Need to Manage Complexity

 Early government and industrial computer systems were primarily

designed to facilitate existing business processes. Applications were developed

to facilitate data input and retrieval for use within a single organization. These

early systems had little or no ability to communicate with external organizations

or between agencies.86 By the late 1980s, increased power and availability of

desktop computers and networked communications introduced the ability to

share information and functionality to improve information sharing, reduce

development cost and increase productivity. However, the complexity of

85 Government Accountability Office. and Committee on Government Reform. Subcommittee

on Technology, “Homeland Security Efforts Under Way to Develop Enterprise Architecture, But
Much Work Remains: Report to the Subcommittee on Technology, Information Policy,
Intergovernmental Relations and the Census, Committee on Government Reform, House of
Representatives,” 2.

86 National Research Council (U.S.). Committee on the Fundamentals of Computer Science:
Challenges and Opportunities, “Computer Science Reflections on the Field, Reflections from the
Field,” 2004, 1, http://www.netlibrary.com/urlapi.asp?action=summary&v=1&bookid=123466.

integrating legacy system functionality and data has proved tremendously

challenging for both government and industry. Modern software architectural

designs manage the complexity of large distributed systems by partitioning and

layering functionality.

 A core aspect of modern software architecture is the concept of

component-based partitioning that reduces system complexity. To illustrate

componentized complexity, system designers often explained the concept using

a dice metaphor. Consider a single-sided die with each of the six sides

representing a possible condition or state. Of course, a single six-sided die can

have one of six states when thrown, one through six. Three six-sided die can

have 216 possible states, which is 36 times more complex than a single die

(216/6).87

Figure 4. Dice Partitions Example88

 To reduce the complexity of a multiple state system, each of the three die

can be partitioned into a three component subsystems. Each partitioned die has

only six possible states; with three partitions, the number of possible states is

reduced to 18 (6+6+6). With all three dice functioning as a single system, “you

would need to examine 216 different states, checking each for correctness.”

With each die examined as a separate system, you need only to examine six

87 Roger Sessions, “A Better Path to Enterprise Architectures,” Microsoft Developers

Network, April 2006, http://msdn.microsoft.com/en-us/library/aa479371.aspx.

88 Ibid.

 51

different states to ensure the first partition is correct, another six states to ensure

that the second partition is correct, and other six states to ensure that the third

partition is correct.89

 Table 3 extends the number of die to nine to show how rapidly complexity

increases for non-partitioned systems compared to maintaining partitioned

functionality. The goal of software component models is the same as the dice

metaphor: separate complex system functionality into partitions or components

with the goal of reducing system complexity with (as explained next) a side

benefit of component reuse and extensibility. Partitioning also reduces the

complexity of risk management, since each partition has a predetermined effect

on other components. Risks can then be compartmented to support distributed

risk models like SEI’s MOSAIC, discussed earlier in this chapter, which is

particularly well suited to managing risk associated with partitioned complexity.

Table 3. Partitioned and Non-Partitioned System States90

89 Sessions, “A Better Path to Enterprise Architectures.”

90 Ibid.

 52

2. Basics of Componentized Design Principles

Modern component-oriented architectures often subdivide application

development into tiers that also help segment functionality. Segments typically

include a presentation or user interface (UI) layer, a business logic layer and a

data layer. Separating major functionality into layers or tiers comprised of

components facilitates architectural concepts like interoperability, reusability and

extensibility.

Figure 5. Tiered Application Layers91

The user interface layers do one thing and one thing only—interact with

system users. As illustrated in Figure 4, user interface (UI) components and the

associated process components do not contain business logic or data access

code; they simply provide a means for users to enter data and display

information. For an example, consider the desktop application in Figure 6. The

UI provides a method for users to add, edit or remove data displayed in the table.

The data table contains information that can be sorted by price, alphabetically, by

91 “Three-Layered Services Application,” Microsoft Developers Network, n.d.,

http://msdn.microsoft.com/en-us/library/ff648105.aspx.

 53

item name or filtered to exclude information. The table and other interface items

are separate components that can be reused in other applications since they do

not contain any logic or data functionality. Instead, the displayed information is

fed to the UI via the business logic layer.

Figure 6. Sample Data Application92

 The business logic layer contains methods that give meaning to raw data

obtained from the database and feed to the UI. For example, if the user requests

(through the UI) a list of customers in the Northwest, the business logic layer will

query the data layer, manipulate the information depending on the business rules

of the organization and feed the result to the UI. Since the business logic is

comprised of separate components, business logic can be easily modified or

replaced without having to significantly alter the UI or data access components.

 The same is true for the data layer. If new methods for retrieving and

manipulating data are developed in the future, additional functionality can be

added to the data layer without impacting the business logic or UI. Modifying or

replacing UI, business or data functionality is much more difficult in systems that

do not implement a componentized, layered architecture.

92 Microsoft Visual Studio v10 demonstration application.

 54

 55

a. Reusability

One advantage of using a layered and componentized system

architecture is the ability to create generalized software components that are

useable in other unrelated systems. For example, a business object designed to

retrieve travel expense data, then calculate and return total cost may be reusable

in other systems, even if they have different user interface and database system.

Component use and reuse also has the potential to reduce development time

and expense by giving developers the option to contract or purchase commercial

components that can be plugged in to existing systems.

b. Extensibility

Another advantage of a modular architecture is the ability to add

functionality as user needs change over time. Component-based systems

contain communication methodologies that allow external components to be

added as required to meet future needs. For example, the architecture design

selected by developers may include an Application Programmer Interface (API)

that creates source code communication pathways to otherwise non-compatible

system functionality. At a higher level, extensibility may simply mean the ability

to link to a separate organization’s system to share functionality. An example of

extensibility is HSIN Next Generation’s video conferencing system, “Connect,”

which is a separate and complete Adobe product seamlessly integrated into the

HSIN system.

c. Interoperability

Interoperability for software development is “the ability of two or

more entities to communicate and cooperate regardless of differences in the

implementation language, the execution environment, or model of abstraction.”93

The concept differs from extensibility in that interoperable architecture primarily

93 M. Madiajagan and B. Vijayakumar, “Interoperability in Component Based Software

Development” (2006): 69.

 56

involves communication with external systems at the data layer. This is

particularly useful for systems that are required to query external legacy systems.

An organization wishing to share legacy system data may create a data access

module that is able to communicate through an agnostic text-based

communication such as XML. External applications can send and receive data

via the interoperability incorporated into the system’s architecture.

3. Architectural Frameworks

To solve the problem of data integration and to foster effective business

practices, dozens of computer system and network-centric architectural

frameworks have come in and out of favor over the past twenty years. The

common goal of these frameworks is to separate or componentize complex

business processes in order to ensure each piece of the puzzle is working

efficiently and fits the needs of the enterprise. One of the most commonly used

frameworks to reduce system complexity is Enterprise Architecture (EA) and its

more recently developed cousin, Service Oriented Architecture (SOA), each with

the goal of simplifying complex systems and fostering information and

functionality sharing.

a. Enterprise Architecture

Enterprise Architecture (EA), also known as the Zachman

Framework, was introduced to the software system development community in

1987 with the publishing of J. A. Zachman’s article, “A Framework for Information

Systems Architecture,” in the IBM System Journal.94 The EA concept was

created to solve two problems: “System complexity—organizations were

spending more and more money building IT systems; and poor business

alignment—organizations were finding it more and more difficult to keep those

94 John A. Zachman, A Framework for Information Systems Architecture (Los Angeles, Calif.:

IBM Los Angeles Scientific Center, 1986).

 57

increasingly expensive IT systems aligned with business needs.”95 Zachman

describes his framework as “simply a logical structure for classifying and

organizing the descriptive representations of an Enterprise that are significant to

the management of the Enterprise, as well as to the development of the

Enterprise's systems.”96 EA provides an intellectual framework for many of the

system architectural designs used today. Zachman demonstrated that enterprise

data, function, network, people, time and motivation are all viewed differently,

based on the individual’s business model, system model and technology model

perspective. Using Zachman’s framework, a system’s architecture is considered

functional only if meets the needs of each perspective in a way that melds

business processes into a useful componentized structure.

Expanding from Zachman’s original concepts, the Department of

Defense, created the Technical Architecture Framework for Information

Management (TAFIM) in 1991 and implemented in 1994.97 The first published

DoD TAFIM document identified services, standards, concepts and components

that guide the development of architectural design patterns.

The success of TAFIM prompted Congress to pass the Clinger-

Cohen Act of 1996, also known as the Information Technology Management

Reform Act, “which mandated that all federal agencies take steps to improve the

effectiveness of their IT investments.”98 Management of the program was

eventually passed to the Office of Budget Management (OMB), where it was

dubbed the government enterprise program the Federal Enterprise Architecture

95 Roger Sessions, “A Comparison of the Top Four Enterprise-Architecture Methodologies,”

Microsoft Developers Network, n.d., http://msdn.microsoft.com/en-us/library/bb466232.aspx.

96 John A. Zachman, Enterprise Architecture and Legacy Systems: Getting Beyond the
Legacy (Zachman International, 1996), 1, http://www.ies.aust.com/papers/zachman1.htm.

97 United States Dept. of Defense and United States. Defense Information Systems Agency,
“Technical architecture framework for information management,” 1996.

98 Sessions, “A Comparison of the Top Four Enterprise-Architecture Methodologies.”

(FEA). The federal government’s goal for FEA is to divide process functionality

into core business and global enterprise services that are available to each

agency as needed.

Figure 7. FEA Segment Map99

As Figure 6 shows, FEA core mission areas describe functionality

used within an agency, such as Health or Education. Enterprise services, like

security, records management and mapping, are common components used

across the enterprise. This framework also ensures all government agencies

have a common lexicon for describing these services. This helps facilitate

component architecture communication and is described in the FEA

Consolidated Reference Model Document Version 2.3.100

99 Office of Management and Budget, Federal Enterprise Architecture Practice Guidance

(White House, 2007), 3,
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov
_2007.pdf.

100 Sessions, “A Comparison of the Top Four Enterprise-Architecture Methodologies.”

 58

 59

b. Service-Oriented Architecture

One of DHS’s most difficult challenges for HSIN is to create an

enterprise architecture that readily enables data and information sharing with

legacy systems. Creating an effective system that bridges data across

independent agencies has so far remained an elusive goal for DHS.

Until recently, sharing separate legacy system databases meant

feeding data from the various systems into a central repository. The main

challenge of feeding a central database is in developing intermediary database

and code able to communicate with each independent data structure. To meet

these challenges and leverage modern network communication technologies,

Service Oriented Architecture, incorporating EA principles, helps simplify legacy

system data and functionality sharing. The SEI explains it this way:

The reality is that service-oriented architecture (SOA) is currently
the best option available for systems integration and the leveraging
of legacy systems. According to a 2007 Gartner Group report, 50%
of new mission-critical operational applications and business
processes were designed in 2007 around SOA, and that number
will be more than 80% by 2010. While the technologies to
implement SOA will probably change over time, one concept will
remain: SOA promises a way to design systems that enables cost-
efficiency, agility, adaptability, and the leveraging of legacy
investments.101

From a high-level perspective, SOA is a componentized

architecture that fosters the EA concept of incorporating business processes

through modern communication and network protocols. SOA is closely tied to

the tiered application model that simplifies reuse, extensibility, and

interoperability by creating applications out of loosely coupled services designed

to connect legacy systems. These services are typically delivered via web

clients, but can also be delivered from service components to desktop application

clients.

c. SOA Practical Example

SOA services provide functionality to any authenticated calling

application or system designed to consume SOA services. Suppose Agency A

maintains a 10+ -year-old database containing customer addresses designed to

be accessed using desktop applications within the organization. Agency B

maintains a similar database of customer data and uses this information to

generate various reports. Without a service-oriented architecture, sharing

information between agencies likely requires custom-built data access

procedures for each agency with which it wishes to share information

Figure 8. Sample SOA Service Design Specification102

101 Software Engineering Institute, “Migrating Legacy Systems to SOA Environments –

eLearning,” n.d., http://www.sei.cmu.edu/training/v06.cfm.
102 Software AG, “Your Guide to SOA Success,” n.d.,

http://communities.softwareag.com/ecosystem/communities/public/businesscommunity/SOA/dow
nload_page_0002.html?overview=/public/businesscommunity/SOA/index.html&overview-page=0.

 60

 61

A SOA-based architecture allows Agency A and B to create

services that hide the details necessary to access their proprietary database. As

illustrated in Figure 8, Agency A could create a high-level service called

CustomerAddressServices that contains a getCustomerAddress method.

Agency B sends a service request via secure XML and receives the requested

data via XML data structure.103 Agency B does not need to know anything about

the database implemented by Agency A other than how to make the request and

the format to expect in the response (defined in the service specification).

Complexity associated with database access is handled by the serving agency’s

service. If fifteen agencies need to share information, all fifteen can create and

publish services to query their data, even if each agency uses radically different

data architecture. As long a standard communication protocol is used (typically

XML), retrieving information from one application to another is trivial.

d. Other SOA Considerations

Creating a system architecture strategy based on SOA requires an

extensive initial planning approach when compared to traditional system designs.

Exposing functionality via services takes additional planning and risk

management in order to determine what data or functions to provide, how to limit

access and provide secure data channels between client and service application.

For multi-agency SOA implementations, a plan must exist to ensure

SOA methodologies and practices are standardized to reduce complexity across

the enterprise. Seemingly simple decisions like method-naming conventions and

documentation standards can become confused if each agency creates separate

policies. The U.S. government sets IT architectural standards through the OMB

and the Office of E-Government that are communicated through Federal

Enterprise Architecture (FEA) documentation. FEA incorporates SOA into their

reference model construct and establishes a baseline for data, performance,

business and service component development. For example, the FEA data

103 Software AG, “Your Guide to SOA Success.”

 62

reference model specifications outlines, “XML schema, the data context defined

by XML namespaces, and data sharing expressed via XML-based request

exchange patterns used within a the Web service (SOA) framework.”104 U.S.

government agencies wishing to share data via services must comply with this

FEA model.

C. CONCLUSION

The previous chapter established the need for a dedicated project

management team for the development or acquisition of large, complex systems.

The project team needs time and resources to understand and document the

problem the system is trying to solve. Gathering and managing user

requirements is a good first step toward developing a useful system.

As this chapter shows, acquisition managers also need the time to

adequately plan and manage risk, and establish a component-based architecture

that reduces integrated-system complexity. Unfortunately, these areas are

sometimes given minimal resources when time is critical. However, skipping

these steps can actually create delays if contingency plans and component

structures are not in place early in a project’s life cycle. Integrating expandability,

reusability and interoperability through architectures like SOA can help ensure

newly developed systems remain viable as technology changes over time.

Good, up-front enterprise architecture planning that manages complexity can

help achieve this goal.

104 Office of Management and Budget, Federal Enterprise Architecture The Data Reference

Model Version 2.0 (White House, 2005),
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov
_2007.pdf.

 63

VI. FINAL ANALYSIS

It is impossible to design a system so perfect that no one needs to be good.

—T.S. Eliot

 Designing and acquiring a government software system is certainly a

challenging task. If government applications were only required to function on a

single system for a single user, the complexity associated with networks and

data sharing would not be an issue. Of course, government-acquired software

and data do not live in a self-contained box. Today’s software must be designed

to accommodate multiple, geographically separated role-based users, utilize

local and distributed networks, and provide a means to share and use data and

functionality. In many cases, sharing must be accomplished between systems

that were not originally designed to accommodate outside data requests. If

government systems do not meet these information-sharing challenges, as well

as provide a responsive and reliable interface, newly acquired systems can and

will fail. These failures cost taxpayers millions of dollars, and must be avoided.

 While HSIN is not a failed system, it has struggled to meet its mandate to

provide users with a solid collaboration and data-sharing platform. Recent

upgrades and integration of COTS components have made it more useful. Also,

plans for future deployment of Next Generation components are promising.

However, studying how and why HSIN initially failed to meet user’s expectations

provides valuable insight into how and why systems falter and sometimes fail.

Additionally, lessons learned from both failed and successful software

acquisition programs can help form best practices that bring 20/20 hindsight

forward to future project success.

 64

A. UNDERSTANDING THE PAST TO PROMOTE FUTURE ACQUISITION
SUCCESS

HSIN is an example of the need to create a new system that integrates

several complex legacy systems not originally designed to share information. As

initial HSIN development illustrates, the rush to deliver a complex system can

result in inadequate planning in key areas needed for project success. Studying

HSIN demonstrated that program managers should be assigned and adequately

staffed to ensure that requirements, risk and architectural planning occur

throughout the project’s life cycle. This thesis concludes with a summary of

these three areas and demonstrates that these important planning processes can

be the difference between a successful or failed project.

1. Requirements are Central to Software Planning

 SEI research shows that as many as 20 percent of large, multi-million-

dollar projects are never completed or, when delivered, do not meet its user’s

needs.105 Many of these projects fail due to a lack of requirements planning that

make establishing minimum initial functionality and milestones difficult or

impossible. Without a comprehensive requirements management plan, projects

easily lose focus on the problem the system was originally attempting to solve.

 Developing a strategy to effectively deliver functionality that meets the

user’s current and future needs requires an understanding of requirements

processes that have worked in past projects. The IEEE Software Journal and

SEI provide outstanding best practices that ensure requirements plans match

user needs with a functionality set that supports milestone planning and easily

feeds risk and architecture development plans.

 Common in best practice requirements methodologies (CMMI and IEEE)

include user requirements elicitation through user questionnaires, discussion

groups, operational scenarios and/or a review of business process documents.

105 Software Engineering Institute, Carnegie Mellon: Software Development.

 65

This phase of planning also consists of a survey of existing technology, currently

in use, that may match stakeholder functionality requirements. Results of user

elicitation can then be prioritized and analyzed to develop an initial functionality

document that is validated between the stakeholder and developers.

Functionality that is considered essential becomes part of the initial operation

capability plan, and the remaining items are set aside until future iterations are

planned. From here, risk management and architectural design planning can

then further the planning process.

2. Risk Management for Integrated Systems

 It is difficult to imagine a complex software acquisition that does not

experience unexpected problems during development and deployment. Taking

the time to plan for potential stumbling blocks can help minimize a potential

problem’s effect on the project. Not planning for risk can appear to save planning

time but often results in project teams fighting fires during development that lead

to delays and unintended consequence. The increasing complexity of integrated

software systems make planning for and mitigating risk a critical part of the

planning process.

 Good risk management practices require planners to identify potential

problems that could derail the project by determining the probability and

expected loss should the risk event occur. Dr. Barry Boehm’s risk equation helps

planners quantify identified risks in order to develop a prioritized list from most

likely and costly risks to low probability and less costly risks. From here,

individual risks should be analyzed to determine their effect on other risks that

can negatively impact the project. Once initial risk planning is complete, the

system should be reevaluated for risks as project development progresses and

contingency plans are executed (as required).

 SEI’s MOSAIC expands the basic risk-planning approach to methods

better suited to managing complex distributed systems. This approach helps

planners evaluate risk and uncertainty across multiple systems with multiple

 66

variables by analyzing organizational processes. MOSAIC’s helps manage

complex risk problems by segmenting processes, determining process risk and

the probably of impact on entire enterprise. This risk approach is particularly

useful for programs like HSIN, integrating several separate systems that each

have their own set of potentially interrelated risks.

3. Architecture to Manage Complexity

Modern software systems are becoming increasingly complex. Integrating

user requirements and risk mitigation requires an architectural plan that

effectively manages complexity. Systems that are pieced together over time by

different developers tend to be difficult to maintain, prone to security issues, and

do not communicate well with other systems. An initial investment in best

practice architectural planning can help ensure systems can easily share

information and functionality and expand as requirements change.

Componentized architecture like SOA is becoming an industry standard

and is fully incorporated into the U.S. government’s Federal Enterprise

Architecture framework. FEA, along with solid risk and requirements planning,

have the potential to help avoid problems encountered by HSIN and to increase

the probability of future government software acquisition success.

 67

APPENDIX

A. HOMELAND SECURITY INFORMATION NETWORK AND THE
DEEPWATER HORIZON GULF OIL SPILL

United States infrastructure resilience depends on an effective

government and private industry response when a disaster strikes. How

efficiently government and industry responds to a national crisis plays a

tremendous role in the degree and length of impact on the nation. The time it

takes to initiate recovery operations often depends on the government’s ability to

coordinate actions with the industry that owns the recovery infrastructure.

Ensuring this coordination and communication takes place during a

disaster is primarily the responsibility of the Department of Homeland Security

(DHS). Given the risks associated with extraction and transportation of oil and

gas, the U.S. energy sector requires well-coordinated and planned emergency

actions to reestablish flow when disruptions occur. The April 2010 explosion of

the oil platform Deepwater Horizon in the Gulf of Mexico provides an example of

how a disaster in this sector can affect the economy, commodity levels and the

environment.

HSIN in its current form allows emergency responders to coordinate

recovery plans, delegate responsibility, and follow up on actions that support a

rapid disaster response. During the early stages of a national disaster,

determining the command structure is key to an effective response. DHS is

responsible for establishing the crisis-response command structure and uses

HSIN to coordinate actions that begin infrastructure and recovery operations.

On 20 April 2010, a Beyond Petroleum (BP)-owned oilrig platform, the

Deepwater Horizon, exploded in the Gulf of Mexico, killing eleven oil workers and

creating one of the worst oil spills on record in the U.S. The explosion resulted in

as much as 62,000 barrels of oil gushing into the gulf per day, creating the

potential for irreparable damage to several critical Gulf Coast natural resources.

 68

At the time of the disaster, damage to the region’s fishing and tourism industries

was estimated to cost the local economy several billion dollars.106

Immediately after the Deepwater Horizon explosion, DHS dispatched the

U.S. Coast Guard to rescue 126 platform workers and established a command

center for the, “16 federal departments and agencies responsible for coordinating

emergency preparedness and response to oil and hazardous substance pollution

events.” 107 The Department of Interior’s (DOI) role in the emergency response

was to ensure BP could provide an adequate response plan to stop the leak and

communicate progress to DHS and to the President of the United States. For

daily operations, the Coast Guard was assigned the mission of coordinating

Regional Response Teams and to act as on-scene incident command to

orchestrate the actions of the Defense Department, Environment Protection

Agency, National Oceanic and Atmospheric Administration, Small Business

Administration, Department of Labor and the National Parks Service.

 To facilitate information flow between these agencies, DHS established an

HSIN portal called MC252 under the Emergency Management Community of

Interest. MC252 allowed the Department of the Interior and Coast Guard to

establish a secure collaboration environment for all involved government entities.

The portal also highlights some of the enhancements DHS put in place during

HSIN’s “Next Generation” upgrade, which was still in progress at the time of the

disaster.

 One of these Next Generation components is the recently revamped

common operating picture (COP) system. This component provided users with

real-time, constantly updated information concerning the spill. Another purpose

of the Deepwater Horizon Incident COP is to provide a tracking system for

deployed forces responding to the incident. Service members from all branches

106 John Kennedy, “Economist: Oil disaster could cost Florida economy 39,000 jobs, $2.2

billion,” Palm Beach Post, June 7, 2010, http://www.palmbeachpost.com/news/state/economist-
oil-disaster-could-cost-florida-economy-39-732979.html.

107 “Deepwater BP Oil Spill,” Whitehouse.gov, n.d., http://www.whitehouse.gov/deepwater-
bp-oil-spill.

of the military services, including the Coast Guard and National Guard mobilized

to respond to the crisis. The COP provided a way for each service to locate and

communicate with other responders.

Figure 9. HSIN Common Operating Picture for MC252108

As Figure 8 shows, the MC252 portal also tracks media reports and

internal requests for information. Responsibility is assigned for each task, along

with updated status information. Each assigned task has a tracking date, source,

and resolution information once complete. Users can search questions already

asked before submitting additional requests. The MC252 portal also includes

maps, critical infrastructure information, media monitoring and a Request for

Information (RFI) tracker. A library of reports and other documents, along with a

MC252 specific video meeting application (Adobe Connect), was added to this

event specific portal.

108 “Common Operating Picture,” Homeland Security Information Network, n.d.,

https://government.hsin.gov/default.aspx.

 69

 70

B. CONCLUSION

Well-coordinated interagency action following a disaster can shorten the

time required to begin recovery operations and bring systems back online.

Despite its rocky start in 2004, HSIN upgrades seem to have increased its

usefulness as an interagency collaboration tool. The use of HSIN to create the

MC252 portal and its use among government agencies for disaster recovery

indicate DHS’s mandate to improve government communication is beginning to

occur.

 71

LIST OF REFERENCES

Alberts, Christopher J., and Audrey J. Dorofee. “Risk Management Framework.”
Software Engineering Institute, Carnegie Mellon, August 2010.
http://www.sei.cmu.edu/reports/10tr017.pdf (accessed October 29, 2010).

Andrus, D. Calvin. “The Wiki and the Blog: Toward a Complex Adaptive

Intelligence Community,” Studies in Intelligence (2005).
http://ssrn.com/abstract=755904 (accessed October 29, 2010).

Arizona State University. “Question List for Software Risk Identification in the

Classroom” (n.d.) http://www.eas.asu.edu/~riskmgmt/qlist.html (accessed
October 29, 2010).

Bass, Len, Paul Clements, and Rick. Kazman. Software Architecture in Practice.

SEI: Series in Software Engineering. Addison-Wesley, 1998.

Boehm, Barry W., and Ez. Nahouraii. IEEE Computer Society, “Software Risk

Management: Principles and Practices.” IEEE Computer Society Press,
1989: 426–435.
http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/RiskMa
nagement/PrinciplesandPractices.pdf (accessed October 29, 2010).

CMMI for Acquisition, Version 1.2. Carnegie Mellon University, Software

Engineering Institute, 2007. http://www.sei.cmu.edu/reports/07tr017.pdf
(accessed October 29, 2010).

Common Operating Picture. Homeland Security Information Network (n.d.)

https://government.hsin.gov/default.aspx (accessed October 29, 2010).

Data and Analysis Center for Software. https://www.thedacs.com/ (accessed

October 29, 2010).

———. “Requirements Engineering,” n.d.

https://www.thedacs.com/databases/url/key/5086 (accessed October 29,
2010).

———.“Risk Management,” 2010.

https://www.thedacs.com/databases/url/key/270 (accessed October 29,
2010).

———. Software Acquisition Gold Practice, 2010.

https://goldpractice.thedacs.com/practices/api/ (accessed October 29,
2010).

http://www.sei.cmu.edu/reports/10tr017.pdf
http://ssrn.com/abstract=755904
http://www.eas.asu.edu/%7Eriskmgmt/qlist.html
http://faculty.salisbury.edu/%7Exswang/Research/Papers/SERelated/RiskManagement/PrinciplesandPractices.pdf
http://faculty.salisbury.edu/%7Exswang/Research/Papers/SERelated/RiskManagement/PrinciplesandPractices.pdf
http://www.sei.cmu.edu/reports/07tr017.pdf
https://government.hsin.gov/default.aspx
https://www.thedacs.com/
https://www.thedacs.com/databases/url/key/5086
https://www.thedacs.com/databases/url/key/270
https://goldpractice.thedacs.com/practices/api/

 72

Deepwater BP Oil Spill.” Whitehouse.gov, (n.d.)
http://www.whitehouse.gov/deepwater-bp-oil-spill (accessed October 29,
2010).

Department of Homeland Security. “About Homeland Security Information

Network” (n.d.)
http://www.dhs.gov/files/programs/gc_1156888108137.shtm (accessed
October 29, 2010).

Dorofee, Audrey, and Christopher Alberts. “Rethinking Risk Management: NDIA

Systems Engineering Conference.” Carnegie Mellon University, Software
Engineering Institute, 2009.
http://www.sei.cmu.edu/library/abstracts/risk/upload/dorofeetutorialworkbo
okndia09_8819-1.pdf (accessed October 29, 2010).

Enterprise Architecture Framework Version 2.0. Information Sharing

Environment, 2008. http://www.ise.gov/docs/eaf/ISE-
EAF_v2.0_20081021.pdf (accessed October 29, 2010).

Final Report: Homeland Security Information Network Advisory Committee

Meeting, February 10–12, 2009. The Department of Homeland Security
(March 27, 2009). http://www.dhs.gov/xlibrary/assets/hsinac_mtg_2009-2-
1012.pdf (accessed October 29, 2010).

Government Accountability Office. “Homeland Security Opportunities Exist to

Enhance Collaboration at 24/7 Operations Centers Staffed by Multiple
DHS Agencies: Report to Congressional Requesters,” 2006.
http://purl.access.gpo.gov/GPO/LPS76414 (accessed October 29, 2010).

———. “Information Technology Management Improvements Needed on the

Department of Homeland Security's Next Generation Information Sharing
System: Report to Congressional Requesters,” 2008.
http://purl.access.gpo.gov/GPO/LPS104962 (accessed October 29, 2010).

———. “Information Technology Numerous Federal Networks Used to Support

Homeland Security Need to be Better Coordinated with Key State and
Local Information-Sharing Initiatives: Report to the Chairman, Committee
on Homeland Security, House of Representatives,” 2007.
http://purl.access.gpo.gov/GPO/LPS82926 (accessed October 29, 2010).

http://www.whitehouse.gov/deepwater-bp-oil-spill
http://www.dhs.gov/files/programs/gc_1156888108137.shtm
http://www.sei.cmu.edu/library/abstracts/risk/upload/dorofeetutorialworkbookndia09_8819-1.pdf
http://www.sei.cmu.edu/library/abstracts/risk/upload/dorofeetutorialworkbookndia09_8819-1.pdf
http://www.ise.gov/docs/eaf/ISE-EAF_v2.0_20081021.pdf
http://www.ise.gov/docs/eaf/ISE-EAF_v2.0_20081021.pdf
http://www.dhs.gov/xlibrary/assets/hsinac_mtg_2009-2-1012.pdf
http://www.dhs.gov/xlibrary/assets/hsinac_mtg_2009-2-1012.pdf
http://purl.access.gpo.gov/GPO/LPS76414
http://purl.access.gpo.gov/GPO/LPS104962
http://purl.access.gpo.gov/GPO/LPS82926

 73

———. “Information Technology Homeland Security Information Network Needs
to be Better Coordinated with Key State and Local Initiatives: Testimony
Before the Subcommittee on Intelligence, Information Sharing and
Terrorism Risk Assessment, Committee on Homeland Security, House of
Representatives,” 2007. http://purl.access.gpo.gov/GPO/LPS83332
(accessed October 29, 2010).

———. “Homeland Security Efforts Under Way to Develop Enterprise

Architecture, But Much Work Remains: Report to the Subcommittee on
Technology, Information Policy, Intergovernmental Relations and the
Census, Committee on Government Reform, House of Representatives,”
2004. http://purl.access.gpo.gov/GPO/LPS53957 (accessed October 29,
2010).

Homeland Security Information Sharing Act of 2002. Public Law 107–296,

November 25, 2002.

Hubert F. Hofmann. “Requirements Engineering as a Success Factor in Software

Projects.” IEEE Software, July 1, 2001.

IEEE Computer Society. Software Engineering Standards Committee, and

Institute of Electrical and Electronics Engineers. IEEE Recommended
Practice for Software Acquisition. New York, NY: Institute of Electrical and
Electronics Engineers, Inc., 1994.

———. Standards Coordinating Committee, Institute of Electrical and Electronics

Engineers, IEEE Standards Board, and American National Standards
Institute. IEEE Standard Glossary of Software Engineering Terminology.
New York, NY: Institute of Electrical and Electronics Engineers, 1990.

John and Mary R. Markle Foundation. Mobilizing Information to Prevent

Terrorism: Accelerating Development of a Trusted Information Sharing
Environment. New York City: The Markle Foundation, 2006.

Kennedy, John. “Economist: Oil disaster could cost Florida economy 39,000 jobs,

$2.2 billion.” Palm Beach Post, June 7, 2010.
http://www.palmbeachpost.com/news/state/economist-oil-disaster-could-
cost-florida-economy-39-732979.html (accessed October 29, 2010).

Lessons Learned from a Large, Multi-Segment, Software-Intensive System.

Software Engineering Institute, Carnegie Mellon, n.d.
http://www.sei.cmu.edu/library/abstracts/reports/09tn013.cfm (accessed
October 29, 2010).

http://purl.access.gpo.gov/GPO/LPS83332
http://purl.access.gpo.gov/GPO/LPS53957
http://www.palmbeachpost.com/news/state/economist-oil-disaster-could-cost-florida-economy-39-732979.html
http://www.palmbeachpost.com/news/state/economist-oil-disaster-could-cost-florida-economy-39-732979.html
http://www.sei.cmu.edu/library/abstracts/reports/09tn013.cfm

 74

Linaje, Marino, Juan Carlos Preciado, and Fernando Sanchez-Figueroa.
“Engineering the Web Track - Engineering Rich Internet Application User
Interfaces over Legacy Web Models.” IEEE internet computing. 11, no. 6
(2007): 53.

Madiajagan, M., and B. Vijayakumar, “Interoperability in Component Based

Software Development” World Academy of Science, Engineering and
Technology, October 2006, Issue 22. 68–76.

Markle Foundation Task Force. “Nation at risk policy makers need better

information to protect the country,” 2009.
http://www.markle.org/events/20090310_nar/20090304_mtf_report.pdf
(accessed October 29, 2010).

Meeting Minutes: Homeland Security Information Network Advisory Committee

Inaugural Meeting, October 30 – November 1 2007. The Department of
Homeland Security, December 28, 2007.
http://www.dhs.gov/xlibrary/assets/hsinac_inauguralmtg_2007-1030-
1101.pdf (accessed October 29, 2010).

National Research Council (U.S.). Committee on the Fundamentals of Computer

Science: Challenges and Opportunities. “Computer Science Reflections
on the Field, Reflections from the Field,” 2004.
http://www.netlibrary.com/urlapi.asp?action=summary&v=1&bookid=1234
66 (accessed October 29, 2010).

Office of Management and Budget. Federal Enterprise Architecture Practice

Guidance. White House, The, 2007.
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_P
ractice_Guidance_Nov_2007.pdf (accessed October 29, 2010).

Office of Management and Budget. Federal Enterprise Architecture The Data

Reference Model Version 2.0. The White House, 2005.
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_P
ractice_Guidance_Nov_2007.pdf (accessed October 29, 2010).

Relyea, Harold, and Jeffrey W. Seifert. Congressional Research Service.

Information Sharing for Homeland Security a Brief Overview. Washington,
DC: Congressional Information Service, Library of Congress, 2005.

Sessions, Roger. “A Better Path to Enterprise Architectures.” Microsoft

Developers Network (April 2006). http://msdn.microsoft.com/en-
us/library/aa479371.aspx (accessed October 29, 2010).

http://www.markle.org/events/20090310_nar/20090304_mtf_report.pdf
http://www.dhs.gov/xlibrary/assets/hsinac_inauguralmtg_2007-1030-1101.pdf
http://www.dhs.gov/xlibrary/assets/hsinac_inauguralmtg_2007-1030-1101.pdf
http://www.netlibrary.com/urlapi.asp?action=summary&v=1&bookid=123466
http://www.netlibrary.com/urlapi.asp?action=summary&v=1&bookid=123466
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov_2007.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov_2007.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov_2007.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/fea_docs/FEA_Practice_Guidance_Nov_2007.pdf

 75

Sessions, Roger. “A Comparison of the Top Four Enterprise-Architecture
Methodologies.” Microsoft Developers Network (May 2007)
http://msdn.microsoft.com/en-us/library/bb466232.aspx. (accessed
October 29, 2010).

Software AG. “Your Guide to SOA Success” (October 2010)

http://communities.softwareag.com/ecosystem/communities/public/busine
sscommunity/SOA/download_page_0002.html?overview=/public/business
community/SOA/index.html&overview-page=0 (accessed October 29,
2010).

Software Engineering Institute, Carnegie Mellon: Software Development, 2010.

http://www.sei.cmu.edu/solutions/softwaredev/ (accessed October 29,
2010).

———. (n.d.), http://www.sei.cmu.edu/ (accessed October 29, 2010).

———. Software Development. “Migrating Legacy Systems to SOA

Environments – eLearning,” (n.d.) http://www.sei.cmu.edu/training/v06.cfm
(accessed October 29, 2010).

Software Program Manager’s Network. “The Little Book of Bad Excuses,” 1998.

http://www.spmn.com/products_guidebooks.html (accessed October 29,
2010).

Software Technology Support Center. “Understanding Risk Management.”

CrossTalk (February 2005).
http://www.stsc.hill.af.mil/crosstalk/2005/02/0502stsc.html (accessed
October 29, 2010).

Three-Layered Services Application. Microsoft Developers Network, (n.d.),

http://msdn.microsoft.com/en-us/library/ff648105.aspx (accessed October
29, 2010).

U.S. Executive Office of the President. “National Strategy for Information

Sharing: Successes and Challenges in Improving Terrorism-Related
Information Sharing,” October 2007.
http://handle.dtic.mil/100.2/ADA473664 (accessed October 29, 2010).

United States Dept. of Defense. Defense Information Systems Agency.

“Technical Architecture Framework for Information Management,” 1996.

http://msdn.microsoft.com/en-us/library/bb466232.aspx
http://communities.softwareag.com/ecosystem/communities/public/businesscommunity/SOA/download_page_0002.html?overview=/public/businesscommunity/SOA/index.html&overview-page=0
http://communities.softwareag.com/ecosystem/communities/public/businesscommunity/SOA/download_page_0002.html?overview=/public/businesscommunity/SOA/index.html&overview-page=0
http://communities.softwareag.com/ecosystem/communities/public/businesscommunity/SOA/download_page_0002.html?overview=/public/businesscommunity/SOA/index.html&overview-page=0
http://www.sei.cmu.edu/solutions/softwaredev/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/training/v06.cfm
http://www.spmn.com/products_guidebooks.html
http://www.stsc.hill.af.mil/crosstalk/2005/02/0502stsc.html
http://msdn.microsoft.com/en-us/library/ff648105.aspx
http://handle.dtic.mil/100.2/ADA473664

 76

Westfall, Linda. “Software Risk Management.” The Westfall Team, 2001.
http://www.westfallteam.com/Papers/risk_management_paper.pdf
(accessed October 29, 2010).

Yim, Randall A. United States General Accounting Office. “National

Preparedness Integrating New and Existing Technology and Information
Sharing Into an Effective Homeland Security Strategy,” 2002.
http://purl.access.gpo.gov/GPO/LPS34938 (accessed October 29, 2010).

Zachman, John A. A Framework for Information Systems Architecture. Los

Angeles, Calif.: IBM Los Angeles Scientific Center, 1986.

Zachman, John A. Enterprise Architecture and Legacy Systems: Getting Beyond

the Legacy. Zachman International, 1996.
http://www.ies.aust.com/papers/zachman1.htm.

Zegart, Amy B. Spying Blind: The CIA, the FBI, and the Origins of 911.

Princeton, N.J.: Princeton University Press, 2007.

http://www.westfallteam.com/Papers/risk_management_paper.pdf
http://purl.access.gpo.gov/GPO/LPS34938

 77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. MAJOR RESEARCH QUESTION
	B. PROBLEMS AND HYPOTHESIS
	C. METHODS AND SOURCES
	D. OVERVIEW

	II. LITERATURE REVIEW
	A. GOVERNMENT SOURCES
	B. NON-PROFIT INSTITUTIONS
	C. ACADEMIC AND STANDARDS BASED INSTITUTIONS
	1. Enterprise and Service-Oriented Architectures
	2. User Interface Guidelines
	3. Complying with Standards

	III. HOMELAND SECURITY INFORMATION NETWORK
	A. HSIN DEVELOPMENT
	B. INITIAL SYSTEM APPLICATIONS
	C. ROLLOUT AND RECEPTION
	D. REGIONAL INFORMATION SHARING AND HSIN
	E. HSIN NEXT GENERATION DEVELOPMENT
	F. HSIN NEXT GENERATION APPLICATIONS
	1. HSIN Common Operating Picture
	2. HSIN Connect
	3. Wikis and Online Reading Rooms (Open Source Component Integration)
	4. Federated Search and Role-Based Data Access

	G. LESSONS FROM HSIN
	1. Inadequate Requirement Planning and Management
	2. Inadequate Risk Planning and Management
	3. Inadequate Architectural Design Practices

	H. CONCLUSION

	IV. IMPORTANCE OF ACQUISITION PLANNING AND REQUIREMENTS MANAGEMENT
	A. WHY ACQUISITIONS SOMETIMES FAIL
	B. PROJECT REQUIREMENTS PLANNING
	1. User Requirements Elicitation
	2. Analysis and Modeling
	3. Validation and Verification

	C. REQUIREMENTS PROGRESS MANAGEMENT
	D. SURVEY OF EXISTING TECHNOLOGY
	E. CASE STUDY: INTELLIPEDIA AS AN OPEN SOURCE SOLUTIONS FOR GOVERNMENT INFORMATION SHARING
	F. CONCLUSION

	V. RISK MANAGEMENT AND ARCHITECTURAL STANDARDS FOR COMPONENT INTEGRATION
	A. SOFTWARE RISK MANAGEMENT
	1. Defining Software Development Risk
	2. Risk Methodologies
	3. Advances in Risk: From Tactical Risk to MOSAIC

	B. SOFTWARE ARCHITECTURE
	1. Evolving Need to Manage Complexity
	2. Basics of Componentized Design Principles
	a. Reusability
	b. Extensibility
	c. Interoperability

	3. Architectural Frameworks
	a. Enterprise Architecture
	b. Service-Oriented Architecture
	c. SOA Practical Example
	d. Other SOA Considerations

	C. CONCLUSION

	VI. FINAL ANALYSIS
	A. UNDERSTANDING THE PAST TO PROMOTE FUTURE ACQUISITION SUCCESS
	1. Requirements are Central to Software Planning
	2. Risk Management for Integrated Systems
	3. Architecture to Manage Complexity

	APPENDIX
	A. HOMELAND SECURITY INFORMATION NETWORK AND THE DEEPWATER HORIZON GULF OIL SPILL
	B. CONCLUSION

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

